版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省9+1高中聯(lián)盟長興中學(xué)2025屆高二上數(shù)學(xué)期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某班新學(xué)期開學(xué)統(tǒng)計新冠疫苗接種情況,已知該班有學(xué)生45人,其中未完成疫苗接種的有5人,則該班同學(xué)的疫苗接種完成率為()A. B.C. D.2.若,則()A. B.C. D.3.已知的周長等于10,,通過建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,頂點的軌跡方程可以是()A. B.C. D.4.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.455.在等差數(shù)列中,已知,則數(shù)列的前9項和為()A. B.13C.45 D.1176.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)為()A. B.C. D.7.為了了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為50的樣本,則分段的間隔為()A.20 B.25C.40 D.508.設(shè)直線與雙曲線(,)的兩條漸近線分別交于,兩點,若點滿足,則該雙曲線的離心率是()A. B.C. D.9.已知斜率為1的直線與橢圓相交于A、B兩點,O為坐標(biāo)原點,AB的中點為P,若直線OP的斜率為,則橢圓C的離心率為()A. B.C. D.10.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.1611.等比數(shù)列的各項均為正數(shù),且,則A. B.C. D.12.已知數(shù)列中,,則()A.2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知與所在平面垂直,且,,,點P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______14.已知直線過拋物線的焦點,且與的對稱軸垂直,與交于,兩點,,為的準(zhǔn)線上一點,則的面積為________15.如圖,在邊長為2的正方形ABCD中,點E,F(xiàn)分別是AB,BC的中A點,將,,,分別沿DE,EF,DF折起,使得A,B,C三點重合于點P,則四面體的外接球表面積為____________.16.已知橢圓,A,B是橢圓C上的兩個不同的點,設(shè),若,則直線AB的方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知各項為正數(shù)的等比數(shù)列中,,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.18.(12分)已知橢圓的中心在原點,對稱軸為坐標(biāo)軸且焦點在軸上,拋物線:,若拋物線的焦點在橢圓上,且橢圓的離心率為.(1)求橢圓的方程;(2)已知斜率存在且不為零的直線滿足:與橢圓相交于不同兩點、,與直線相交于點.若橢圓上一動點滿足:,,且存在點,使得恒為定值,求的值.19.(12分)點與定點的距離和它到直線:的距離的比是常數(shù).(1)求動點的軌跡的方程;(2)點在(1)中軌跡上運動軸,為垂足,點滿足,求點軌跡方程.20.(12分)已知命題p:直線與雙曲線的右支有兩個不同的交點,命題q:直線與直線平行.(1)若,判斷命題“”的真假;(2)若命題“”為真命題,求實數(shù)k的取值范圍.21.(12分)已知點,圓.(1)若直線l過點M,且被圓C截得的弦長為,求直線l的方程;(2)設(shè)O為坐標(biāo)原點,點N在圓C上運動,線段的中點為P,求點P的軌跡方程.22.(10分)已知數(shù)列的前n項和為,且(1)求數(shù)列的通項公式;(2)若,數(shù)列的前n項和為,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用古典概型的概率求解.【詳解】該班同學(xué)的疫苗接種完成率為故選:D2、D【解析】設(shè),計算出、的值,利用平方差公式可求得結(jié)果.【詳解】設(shè)由已知可得,,因此,.故選:D.3、A【解析】根據(jù)橢圓的定義進行求解即可.【詳解】因為的周長等于10,,所以,因此點的軌跡是以為焦點的橢圓,且不在直線上,因此有,所以頂點的軌跡方程可以是,故選:A4、B【解析】根據(jù)已知求出公差即可得出.【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,則.故選:B.5、C【解析】根據(jù)給定的條件利用等差數(shù)列的性質(zhì)計算作答【詳解】在等差數(shù)列中,因,所以.故選:C6、D【解析】由復(fù)數(shù)除法求得后可得其共軛復(fù)數(shù)【詳解】由題意,∴故選:D7、A【解析】根據(jù)系統(tǒng)抽樣定義可求得結(jié)果【詳解】分段的間隔為故選:A8、C【解析】先求出,的坐標(biāo),再求中點坐標(biāo),利用點滿足,可得,從而求雙曲線的離心率.【詳解】解:由雙曲線方程可知,漸近線為,分別于聯(lián)立,解得:,,所以中點坐標(biāo)為,因為點滿足,所以,所以,即,所以.故選:C.【點睛】本題考查雙曲線的離心率,考查直線與雙曲線的位置關(guān)系,考查學(xué)生的計算能力,屬于中檔題.9、B【解析】這是中點弦問題,注意斜率與橢圓a,b之間的關(guān)系.【詳解】如圖:依題意,假設(shè)斜率為1的直線方程為:,聯(lián)立方程:,解得:,代入得,故P點坐標(biāo)為,由題意,OP的斜率為,即,化簡得:,,,;故選:B.10、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當(dāng)且僅當(dāng)時取等.故選:B.11、B【解析】根據(jù)等比數(shù)列的性質(zhì),結(jié)合已知條件,求得,進而求得的值.【詳解】由于數(shù)列是等比數(shù)列,故,所以,故.故選B.【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運算,屬于基礎(chǔ)題.12、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】取的中點,的中點,以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)求出,再由空間向量的數(shù)量積即可求解.【詳解】取的中點,的中點,如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,由,即,解得,所以,故,設(shè)為平面ACQ的一個法向量,因為,,由,即,所以,設(shè)直線AP與平面ACQ所成角為,則.故答案為:14、【解析】先設(shè)出拋物線方程,寫出準(zhǔn)線方程和焦點坐標(biāo),利用得到拋物線方程,再利用三角形的面積公式進行求解.【詳解】設(shè)拋物線的方程為,則焦點為,準(zhǔn)線方程為,由題意,得,,,所以,解得,所以.故答案為:.15、【解析】由題意在四面體中兩兩垂直,將該四面體補成長方體,則長方體與四面體的外接球相同,從而可求解.【詳解】將直角,,,分別沿DE,EF,DF折起,使得A,B,C三點重合于點P,所以在四面體中兩兩垂直,將該四面體補成長方體,如圖.則長方體與四面體的外接球相同.長方體的外接球在其對角線的中點處.由題意可得,則長方體的外接球的半徑為所以四面體的外接球表面積為故答案為:16、【解析】由已知可得為的中點,再由點差法求所在直線的斜率,即可求得直線的方程【詳解】由,可得為的中點,且在橢圓內(nèi),設(shè),,,,則,,,則,即所在直線的斜率為直線的方程為,即故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)條件求出即可;(2),然后利用等差數(shù)列的求和公式求出答案即可.【詳解】(1)且,,(2)18、(1)(2)【解析】(1)先求得橢圓的,代入公式即可求得橢圓的方程;(2)以設(shè)而不求的方法得到兩根和,再由條件,得到四邊形為平行四邊形,并以向量方式進行等價轉(zhuǎn)化,再與恒為定值進行聯(lián)系,即可求得的值.【小問1詳解】由條件可設(shè)橢圓:,因為拋物線:的焦點為,所以,解得因為橢圓離心率為,所以,則,故橢圓的方程為【小問2詳解】設(shè)直線:,,,把直線的方程代入橢圓的方程,可得,所以,因為,,所以四邊形為平行四邊形,得,即,得由在橢圓上可得,,即因為,又所以,所以將代入得,所以,即.【點睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。19、(1);(2)【解析】(1)根據(jù)題意用表示出與,再代入,再化簡即可得出答案。(2)設(shè),利用表示出點,再將點代入橢圓,化簡即可得出答案?!驹斀狻浚?)由題意知,所以化簡得:(2)設(shè),因為,則將代入橢圓得化簡得【點睛】本題考查軌跡方程,一般求某點的軌跡方程,只需要設(shè)該點為,利用所給條件建立的關(guān)系式,化簡即可。屬于基礎(chǔ)題。20、(1)命題“”為真命題(2)【解析】(1)先判斷命題p,命題q的真假,再利用復(fù)合命題的真假判斷;(2)根據(jù)命題“”真命題,由p為真命題,q為假命題求解.【小問1詳解】解:對于命題p,易知直線與雙曲線的左、右支各有一個交點,∴命題p為假命題;對于命題q,時,有與,顯然兩條直線垂直,∴命題q為假命題.∴命題“”為真命題.【小問2詳解】∵命題“”為真命題,∴p為真命題,q為假命題.對于命題p,由得,直線與雙曲線的右支有兩個不同的交點,即此方程有兩個不同的正根,∴得.對于命題q,要使命題q為真,則,解得,∴命題q為假命題,即.∴實數(shù)k的取值范圍為.21、(1)或(2)【解析】(1)由直線被圓C截得的弦長為,求得圓心到直線的距離為,分直線的斜率不存在和斜率存在兩種情況討論,結(jié)合點到直線的距離公式,列出方程,即可求解.(2)設(shè)點,,根據(jù)線段的中點為,求得,結(jié)合在圓上,代入即可求解.【小問1詳解】解:由題意,圓,可得圓心,半徑,因為直線被圓C截得的弦長為,則圓心到直線的距離為,當(dāng)直線的斜率不存在時,此時直線的方程為,滿足題意;當(dāng)直線的斜率存在時,設(shè)直線的方程為,即,則,解得,即,綜上可得,所求直線的方程為或.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版危險品租賃與安全操作規(guī)程合同3篇
- 2025年度危險廢棄物承攬運送合同范本4篇
- 個人臨時資金借用合同2024版B版
- 2025年度起重機械安裝拆除安全監(jiān)理與施工質(zhì)量監(jiān)督合同
- 二零二五年度空調(diào)設(shè)備拆除及舊件回收利用合同
- 2025年度學(xué)術(shù)論文版權(quán)轉(zhuǎn)讓與學(xué)術(shù)評價體系共建合同
- 二零二五年度餐廳轉(zhuǎn)讓合同范本(含食材采購合同)3篇
- SaaS服務(wù)合同范本2024年版版B版
- 個人產(chǎn)業(yè)園區(qū)土地使用權(quán)轉(zhuǎn)讓合同2024年3篇
- 2025年度木材運輸與木材加工節(jié)能減排合同4篇
- 課題申報書:GenAI賦能新質(zhì)人才培養(yǎng)的生成式學(xué)習(xí)設(shè)計研究
- 駱駝祥子-(一)-劇本
- 全國醫(yī)院數(shù)量統(tǒng)計
- 《中國香文化》課件
- 2024年醫(yī)美行業(yè)社媒平臺人群趨勢洞察報告-醫(yī)美行業(yè)觀察星秀傳媒
- 第六次全國幽門螺桿菌感染處理共識報告-
- 天津市2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 經(jīng)濟學(xué)的思維方式(第13版)
- 中國綠色食品市場調(diào)查與分析報告
- 手衛(wèi)生依從性調(diào)查表
- 湖北教育出版社四年級下冊信息技術(shù)教案
評論
0/150
提交評論