甘肅省慶陽寧縣聯(lián)考2024年數(shù)學九上開學復習檢測模擬試題【含答案】_第1頁
甘肅省慶陽寧縣聯(lián)考2024年數(shù)學九上開學復習檢測模擬試題【含答案】_第2頁
甘肅省慶陽寧縣聯(lián)考2024年數(shù)學九上開學復習檢測模擬試題【含答案】_第3頁
甘肅省慶陽寧縣聯(lián)考2024年數(shù)學九上開學復習檢測模擬試題【含答案】_第4頁
甘肅省慶陽寧縣聯(lián)考2024年數(shù)學九上開學復習檢測模擬試題【含答案】_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共4頁甘肅省慶陽寧縣聯(lián)考2024年數(shù)學九上開學復習檢測模擬試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)下列圖形既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2、(4分)如圖,在△ABC中,AB=5,BC=6,AC=7,點D,E,F(xiàn)分別是△ABC三邊的中點,則△DEF的周長為()A.12 B.11 C.10 D.93、(4分)已知y是x的正比例函數(shù),且函數(shù)圖象經(jīng)過點,則在此正比例函數(shù)圖象上的點是()A. B. C. D.4、(4分)下面幾組條件中,能判斷一個四邊形是平行四邊形的是()A.一組對邊相等 B.兩條對角線互相平分C.一組對邊平行 D.兩條對角線互相垂直5、(4分)函數(shù)y=中,自變量x的取值范圍是()A.x>﹣2 B.x≥﹣2 C.x≠2 D.x≤﹣26、(4分)如圖,E為邊長為2的正方形ABCD的對角線上一點,BE=BC,P為CE上任意一點,PQ⊥BC于點Q,PR⊥BE于R,則PQ+PR的值為()A. B. C. D.7、(4分)如圖,在中,是的中點,,,則的長為()A. B.4 C. D.8、(4分)下列各式從左到右的變形中,是因式分解的是()A. B.C. D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)小強調(diào)查“每人每天的用水量”這一問題時,收集到80個數(shù)據(jù),最大數(shù)據(jù)是70升,最小數(shù)據(jù)是42升,若取組距為4,則應分為_________組繪制頻數(shù)分布表.10、(4分)數(shù)據(jù)6,5,7,7,9的眾數(shù)是.11、(4分)在□ABCD中,一角的平分線把一條邊分成3cm和4cm兩部分,則□ABCD的周長為__________.12、(4分)如圖,矩形ABCD的對角線AC與BD相交于點O,CE//BD,DE//AC.若AD=23,AB=2,則四邊形OCED的面積為___13、(4分)已知,如圖,在△ABC中,OB和OC分別平分∠ABC和∠ACB,過O作DE∥BC,分別交AB、AC于點D、E,若BD+CE=5,則線段DE的長為_____.三、解答題(本大題共5個小題,共48分)14、(12分)在平面直角坐標系中,原點為O,已知一次函數(shù)的圖象過點A(0,5),點B(﹣1,4)和點P(m,n)(1)求這個一次函數(shù)的解析式;(2)當n=2時,求直線AB,直線OP與x軸圍成的圖形的面積;(3)當△OAP的面積等于△OAB的面積的2倍時,求n的值15、(8分)如圖,在四邊形中,,,對角線,交于點,平分,過點作交的延長線于點,連接.(1)求證:四邊形是菱形;(2)若,,求的長.16、(8分)如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點和點.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)直接寫出不等式的解集.17、(10分)如圖,中,是的中點,將沿折疊后得到,且

點在□內(nèi)部.將延長交于點.(1)猜想并填空:________(填“”、“”、“”);(2)請證明你的猜想;(3)如圖,當,設,,,證明:.18、(10分)已知:在平面直角坐標系中,邊長為8的正方形OABC的兩邊在坐標軸上(如圖).(1)求點A,B,C的坐標.(2)經(jīng)過A,C兩點的直線l上有一點P,點D(0,6)在y軸正半軸上,連PD,PB(如圖1),若PB2﹣PD2=24,求四邊形PBCD的面積.(3)若點E(0,1),點N(2,0)(如圖2),經(jīng)過(2)問中的點P有一條平行于y軸的直線m,在直線m上是否存在一點M,使得△MNE為直角三角形?若存在,求M點的坐標;若不存在,請說明理由.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,在四邊形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,則AC=__________.20、(4分)函數(shù)中,自變量________的取值范圍是________.21、(4分)已知直線經(jīng)過點(-2,2),并且與直線平行,那么________.22、(4分)如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上.下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正確結(jié)論的序號是________________23、(4分)若一個三角形的三邊的比為3:4:5,則這個三角形的三邊上的高之比為__________.二、解答題(本大題共3個小題,共30分)24、(8分)在平面直角坐標系xOy中,點P和圖形W的“中點形”的定義如下:對于圖形W上的任意一點Q,連結(jié)PQ,取PQ的中點,由所以這些中點所組成的圖形,叫做點P和圖形W的“中點形”.已知C(-2,2),D(1,2),E(1,0),F(xiàn)(-2,0).(1)若點O和線段CD的“中點形”為圖形G,則在點,,中,在圖形G上的點是;(2)已知點A(2,0),請通過畫圖說明點A和四邊形CDEF的“中點形”是否為四邊形?若是,寫出四邊形各頂點的坐標,若不是,說明理由;(3)點B為直線y=2x上一點,記點B和四邊形CDEF的中點形為圖形M,若圖形M與四邊形CDEF有公共點,直接寫出點B的橫坐標b的取值范圍.25、(10分)某商場銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如表所示AB進價(萬元/套)1.51.2售價(萬元/套)1.651.4該商場計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元.(1)該商場計劃購進A,B兩種品牌的教學設備各多少套?(2)通過市場調(diào)研,該商場決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少的數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過69萬元,問A種設備購進數(shù)量至多減少多少套?26、(12分)(1)計算:(2)如圖,E、F是矩形ABCD邊BC上的兩點,且AF=DE.求證:BE=CF.

參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、D【解析】

直接利用軸對稱圖形和中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,但不是中心對稱圖形,故此選項錯誤;

B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

D、既是中心對稱圖形也是軸對稱圖形,故此選項正確.

故選:D.此題主要考查了中心對稱與軸對稱的概念:軸對稱的關(guān)鍵是尋找對稱軸,兩邊圖象折疊后可重合,中心對稱是要尋找對稱中心,旋轉(zhuǎn)180°后與原圖重合.2、D【解析】

根據(jù)三角形中位線定理分別求出DE、EF、DF,計算即可.【詳解】∵點D,E分別AB、BC的中點,∴DE=AC=3.5,同理,DF=BC=3,EF=AB=2.5,∴△DEF的周長=DE+EF+DF=9,故選D.本題考查的是三角形中位線定理,熟練掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關(guān)鍵.3、D【解析】

利用待定系數(shù)法可求出正比例函數(shù)解析式,再利用一次函數(shù)圖象上點的坐標特征可找出點(-4,6)在此正比例函數(shù)圖象上,此題得解.【詳解】解:設正比例函數(shù)解析式為y=kx(k≠0).∵正比例函數(shù)圖象經(jīng)過點(4,-6),∴-6=4k,∴.∵當x=-4時,y=x=6,∴點(-4,6)在此正比例函數(shù)圖象上.故選D.本題考查了待定系數(shù)法求正比例函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,牢記直線上任意一點的坐標都滿足函數(shù)關(guān)系式y(tǒng)=kx+b是解題的關(guān)鍵.4、B【解析】試題分析:平行四邊形的五種判定方法分別是:(1)兩組對邊分別平行的四邊形是平行四邊形;(2)兩組對邊分別相等的四邊形是平行四邊形;(3)一組對邊平行且相等的四邊形是平行四邊形;(4)兩組對角分別相等的四邊形是平行四邊形;(5)對角線互相平分的四邊形是平行四邊形.根據(jù)平行四邊形的判定方法,采用排除法,逐項分析判斷.解:A、一組對邊相等,不能判斷,故錯誤;B、兩條對角線互相平分,能判斷,故正確;C、一組對邊平行,不能判斷,故錯誤;D、兩條對角線互相垂直,不能判斷,故錯誤.故選B.考點:平行四邊形的判定.5、B【解析】依題意,得x+2≥0,解得:x≥-2.故選B.6、B【解析】

連接BP,設點C到BE的距離為h,然后根據(jù)S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根據(jù)正方形的性質(zhì)求出h即可.【詳解】解:如圖,連接BP,設點C到BE的距離為h,

則S△BCE=S△BCP+S△BEP,

即BE?h=BC?PQ+BE?PR,

∵BE=BC,

∴h=PQ+PR,

∵正方形ABCD的邊長為2,

∴h=2×.

故選B.本題考查了正方形的性質(zhì),三角形的面積,熟記性質(zhì)并作輔助線,利用三角形的面積求出PQ+PR等于點C到BE的距離是解題的關(guān)鍵.7、D【解析】

根據(jù)相似三角形的判定和性質(zhì)定理和線段中點的定義即可得到結(jié)論.【詳解】解:∵∠ADC=∠BAC,∠C=∠C,

∴△BAC∽△ADC,

∴,

∵D是BC的中點,BC=6,

∴CD=3,

∴AC2=6×3=18,

∴AC=,

故選:D.本題考查相似三角形的判定和性質(zhì),線段中點的定義,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.8、D【解析】

把一個多項式化為幾個整式的積的形式,這種變形叫做把這個多項式因式分解,結(jié)合選項進行判斷即可.【詳解】解:A、不是因式分解,故A錯誤;B、是整式乘法,故B錯誤;C、,故C錯誤;D、,故D正確;故選:D.本題考查了因式分解的意義,關(guān)鍵是熟練掌握定義,區(qū)別開整式的乘除運算.二、填空題(本大題共5個小題,每小題4分,共20分)9、1【解析】

解:應分(70-42)÷4=7,

∵第一組的下限應低于最小變量值,最后一組的上限應高于最大變量值,∴應分1組.

故答案為:1.10、1.【解析】試題分析:數(shù)字1出現(xiàn)了2次,為出現(xiàn)次數(shù)最多的數(shù),故眾數(shù)為1,故答案為1.考點:眾數(shù).11、2cm或22cm【解析】如圖,設∠A的平分線交BC于E點,∵AD∥BC,∴∠BEA=∠DAE,又∵∠BAE=∠DAE,∴∠BEA=∠BAE∴AB=BE.∴BC=3+4=1.①當BE=4時,AB=BE=4,□ABCD的周長=2×(AB+BC)=2×(4+1)=22;②當BE=3時,AB=BE=3,□ABCD的周長=2×(AB+BC)=2×(3+1)=2.所以□ABCD的周長為22cm或2cm.故答案為:22cm或2cm.點睛:本題考查了平行四邊形的性質(zhì)以及等腰三角形的性質(zhì)與判定.此題難度適中,注意掌握分類討論思想與數(shù)形結(jié)合思想的應用.12、2【解析】

連接OE,與DC交于點F,由四邊形ABCD為矩形得到對角線互相平分且相等,進而得到OD=OC,再由兩組對邊分別平行的四邊形為平行四邊形得到OCED為平行四邊形,根據(jù)鄰邊相等的平行四邊形為菱形得到四邊形OCED為菱形,得到對角線互相平分且垂直,求出菱形OCED的面積即可.【詳解】解:連接OE,與DC交于點F,

∵四邊形ABCD為矩形,

∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,

∵OD∥CE,OC∥DE,

∴四邊形ODEC為平行四邊形,

∵OD=OC,

∴四邊形OCED為菱形,

∴DF=CF,OF=EF,DC⊥OE,

∵DE∥OA,且DE=OA,

∴四邊形ADEO為平行四邊形,

∵AD=23,AB=2,

∴OE=23,CD=2,

則S菱形OCED=12OE?DC=12×23×2=23本題考查矩形的性質(zhì),菱形的判定與性質(zhì),以及勾股定理,熟練掌握矩形的性質(zhì)是解題的關(guān)鍵.13、1【解析】

根據(jù)OB和OC分別平分∠ABC和∠ACB,和DE∥BC,利用兩直線平行,內(nèi)錯角相等和等量代換,求證出DB=DO,OE=EC.然后即可得出答案.【詳解】解:∵在△ABC中,OB和OC分別平分∠ABC和∠ACB,

∴∠DBO=∠OBC,∠ECO=∠OCB,

∵DE∥BC,

∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,

∴DB=DO,OE=EC,

∵DE=DO+OE,

∴DE=BD+CE=1.

故答案為1.此題主要考查學生對等腰三角形的判定與性質(zhì)平行線段性質(zhì)的理解和掌握,此題關(guān)鍵是求證DB=DO,OE=EC,難度不大,是一道基礎題.三、解答題(本大題共5個小題,共48分)14、(1)y=x+5;(2)5;(1)7或1【解析】

(1)利用待定系數(shù)法求一次函數(shù)的解析式;(2)設直線AB交x軸于C,如圖,則C(﹣5,0),然后根據(jù)三角形面積公式計算S△OPC即可;(1)利用三角形面積公式得到×5×|m|=2××1×5,解得m=2或m=﹣2,然后利用一次函數(shù)解析式計算出對應的縱坐標即可.【詳解】解:(1)設這個一次函數(shù)的解析式是y=kx+b,把點A(0,5),點B(﹣1,4)的坐標代入得:,解得:k=1,b=5,所以這個一次函數(shù)的解析式是:y=x+5;(2)設直線AB交x軸于C,如圖,當y=0時,x+5=0,解得x=﹣5,則C(﹣5,0),當n=2時,S△OPC=×5×2=5,即直線AB,直線OP與x軸圍成的圖形的面積為5;(1)∵當△OAP的面積等于△OAB的面積的2倍,∴×5×|m|=2××1×5,∴m=2或m=﹣2,即P點的橫坐標為2或﹣2,當x=2時,y=x+5=7,此時P(2,7);當x=﹣2時,y=x+5=1,此時P(﹣2,1);綜上所述,n的值為7或1.本題考查了待定系數(shù)法求一次函數(shù)解析式:先設出函數(shù)的一般形式,如求一次函數(shù)的解析式時,先設y=kx+b;將自變量x的值及與它對應的函數(shù)值y的值代入所設的解析式,得到關(guān)于待定系數(shù)的方程或方程組;解方程或方程組,求出待定系數(shù)的值,進而寫出函數(shù)解析式.15、(1)證明見解析;(2)2.【解析】分析:(1)根據(jù)一組對邊相等的平行四邊形是菱形進行判定即可.(2)根據(jù)菱形的性質(zhì)和勾股定理求出.根據(jù)直角三角形斜邊的中線等于斜邊的一半即可求解.詳解:(1)證明:∵∥,∴∵平分∴,∴∴又∵∴又∵∥,∴四邊形是平行四邊形又∵∴是菱形(2)解:∵四邊形是菱形,對角線、交于點.∴.,,∴.在中,.∴.∵,∴.在中,.為中點.∴.點睛:本題考查了平行四邊形的性質(zhì)和判定,菱形的判定與性質(zhì),直角三角形的性質(zhì),勾股定理等,熟練掌握菱形的判定方法以及直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.16、(1),;(2)或.【解析】

(1)將點A的坐標代入反比例函數(shù)的解析式可求得m的值,從而得到反比例函數(shù)的解析式,然后將點B的坐標代入可求得n的值,接下來,利用待定系數(shù)法求得直線AB的解析式即可;

(2)不等式的解集為直線y=kx+b位于反比例函數(shù)上方部分時,自變量x的取值范圍;【詳解】解:(1)∵點在反比例函數(shù)上,∴,∴反比例函數(shù)解析式為:.∵點在上,∴.∴.將點,代入,得.解得.直線的解析式為:.(2)直線y=kx+b位于反比例函數(shù)上方部分時,x的取值范圍是或.∴不等式的解集為或.本題主要考查的是反比例函數(shù)的綜合應用,數(shù)形結(jié)合是解答問題(2)的關(guān)鍵17、(1)=;(2)見解析;(3)見解析【解析】

(1)根據(jù)折疊的性質(zhì)、平行四邊形的性質(zhì)、以及等腰三角形的判定與性質(zhì)可猜想為相等;(2)先證明∠EDF=∠EGF,再證明EG=ED,則等邊對等角得:∠EGD=∠EDG,相減可得結(jié)論;(3)分別表示BF、CF、BC的長,證明ABCD是矩形得:∠C=90°,在Rt△BCF中,由勾股定理列式可得結(jié)論.【詳解】解:(1)GF=DF,故答案為:=;(2)理由是:連接DG,由折疊得:AE=EG,∠A=∠BGE,∵E在AD的中點,∴AE=ED,∴ED=EG,∴∠EGD=∠EDG,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A+∠ADC=180°,∵∠BGE+∠EGF=180°,∴∠EDF=∠EGF,∴∠EDF-∠EDG=∠EGF-∠EGD,即∠GDF=∠DGF,∴GF=DF;(3)證明:如圖2,由(2)得:DF=GF=b,由圖可得:BF=BG+GF=a+b,由折疊可得:AB=BG=a,AE=EG=c,在ABCD中,BC=AD=2AE=2c,CD=AB=a,∴CF=CD-DF=a-b,∵∠A=90°,∴ABCD是矩形,∴∠C=90°,在Rt△BCF中,由勾股定理得,BC2+CF2=BF2,∴(2c)2+(a-b)2=(a+b)2,整理得:c2=ab.本題考查了平行四邊形的性質(zhì)、矩形的性質(zhì)和判定、勾股定理、折疊的性質(zhì)、等腰三角形的性質(zhì)與判定,難度適中,熟練掌握折疊前后的邊和角相等是關(guān)鍵.18、(1)A(8,0),B(8,8),C(0,8);(2)15;(3)M的坐標是(3,7)或(3,2)【解析】

(1)根據(jù)正方形的性質(zhì)直接寫出點A,B,C的坐標.(2)求得直線AC的解析式為y=-x+8,過點P作平行于x軸的直線,根據(jù)題意可求點P的坐標是:P(3,5),故四邊形PBCD的面積=S△PCD+S△PBC(3)根據(jù)第(2)中求得的P(3,5),設M(3,t),分類討論:①當∠MEN=90°時,ME2=32+(t-1)2,EN2=12+22,MN2=12+t2,利用勾股定理求得t的值,②當∠MNE=90°時,同理可求:M(3,2).③顯然∠EMN不可能等于90°.綜合可得:使△MNE為直角三角形的點是M(3,7)或M(3,2),【詳解】(1)∵如圖1,四邊形OABC是正方形,且其邊長為8,∵.OA=AB=BC=OC=8,∴A(8,0),B(8,8),C(0,8),(2)設直線AC的解析式為y=k+8,將A(8,0)代入,得0=8k+8,解得k=-1故直線AC的解析式為y=-x+8.設P(x,-x+8)∵PB2-PD2=24,D(0,6),B(8,8),∴(x-8)2+(-x+8-8)2-x2-(-x+8-6)2=24,解得x=3,∴點P的坐標是:P(3,5),∴四邊形PBCD的面積=S△PCD+S△PBC=12×2×3+1(3)根據(jù)第(2)中求得的P(3,5),設M(3,t),分類討論:①當∠MEN=90°時,ME2=32+(t-1)2,EN2=12+22,MN2=12+t2∴MN2=ME2+EN2∴1+t2=9+t2-2t+1+5,∴t=7,∴M(3,7)②當∠MNE=90°時,同理可求:M(3,2)③顯然∠EMN不可能等于90°綜合可得:使△MNE為直角三角形的點M的坐標是(3,7)或(3,2).此題考查了四邊形綜合題,利用待定系數(shù)法求一次函數(shù)的解析式,正方形的性質(zhì),坐標與圖形的特點,三角形面積的求法,勾股定理等知識點,第(3)問難度較大,運用了分類討論的思想和數(shù)形結(jié)合的思想.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】

以B為圓心,BA長為半徑作圓,延長AB交⊙B于E,連接CE,由圓周角定理的推論得,進而CE=AD=1,由直徑所對的圓周角是直角,有勾股定理即可求得AC的長.【詳解】如圖,以B為圓心,BA長為半徑作圓,延長AB交⊙B于E,連接CE,∵AB=BC=BD=2,∴C,D在⊙B上,∵AB∥CD,∴,∴CE=AD,∵AD=1,∴CE=AD=1,AE=AB+BE=2AB=4,∵AE是⊙B的直徑,∴∠ACE=90o,∴AC==,故答案為.本題借助于圓的模型把三角形的問題轉(zhuǎn)化為圓的性質(zhì)的問題,再解題過程中需讓學生體會這種轉(zhuǎn)化的方法.20、且【解析】

根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于0,分母不等于O,可以求出x的范圍.【詳解】解:根據(jù)題意得:計算得出:x≥-2且x≠1.故答案是:x≥-2且x≠1.本題考查了二次根式被開方數(shù)大于等于0及分式中分母不能為0等知識.21、1.【解析】根據(jù)兩直線平行的問題得到k=2,然后把(﹣2,2)代入y=2x+b可計算出b的值.解:∵直線y=kx+b與直線y=2x+1平行,∴k=2,把(﹣2,2)代入y=2x+b得2×(﹣2)+b=2,解得b=1.故答案為1.22、①②④【解析】

根據(jù)三角形的全等的知識可以判斷①的正誤;根據(jù)角角之間的數(shù)量關(guān)系,以及三角形內(nèi)角和為180°判斷②的正誤;根據(jù)線段垂直平分線的知識可以判斷③的正誤,利用解三角形求正方形的面積等知識可以判斷④的正誤.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∵△AEF是等邊三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①說法正確;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②說法正確;如圖,連接AC,交EF于G點,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③說法錯誤;∵EF=2,∴CE=CF=,設正方形的邊長為a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a-)2=4,解得a=,則a2=2+,S正方形ABCD=2+,④說法正確,故答案為①②④.本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),熟悉掌握是解題關(guān)鍵.23、20:15:1.【解析】

根據(jù)勾股定理的逆定理得到這個三角形是直角三角形,根據(jù)三角形的面積公式求出斜邊上的高,然后計算即可.【詳解】解:設三角形的三邊分別為3x、4x、5x,∵(3x)2+(4x)2=25x2=(5x)2,∴這個三角形是直角三角形,設斜邊上的高為h,則×3x×4x=×5x×h,解得,h=,則這個三角形的三邊上的高之比=4x:3x:=20:15:1,故答案為:20:15:1.本題考查的是勾股定理的逆定理、三角形的面積計算,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.二、解答題(本大題共3個小題,共30分)24、(1),;(1)點A和四邊形CDEF的“中點形”是四邊形,各頂點的坐標為:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或1≤b≤1.【解析】

(1)依照題意畫出圖形,觀察圖形可知點O和線段CD的中間點所組成的圖形是線段C′D′,根據(jù)點A,C,D的坐標,利用中點坐標公式可求出點C′,D′的坐標,進而可得出結(jié)論;

(1)畫出圖形,觀察圖形可得出結(jié)論;(3)利用一次函數(shù)圖象上點的坐標特征可得出點B的坐標為(n,1n),依照題意畫出圖形,觀察圖形可知:點B和四邊形CDEF的中間點只能在邊EF和DE上,當點B和四邊形CDEF的中間點在邊EF上時,利用四邊形CDEF的縱坐標的范圍,可得出關(guān)于n的一元一次不等式組,解之即可得出n的取值范圍;當點B和四邊形CDEF的中間點在邊DE上時,由四邊形CDEF的橫、縱坐標的范圍,可得出關(guān)于n的一元一次不等式組,解之即可得出n的取值范圍.綜上,此題得解.【詳解】解:(1)如圖:點O和線段CD的中間點所組成的圖形G是線段C′D′,由題意可知:點C′為線段OC的中點,點D′為線段OD的中點.

∵點C的坐標為(-1,1),點D的坐標為(1,1),

∴點C′的坐標為(-1,1),點D′的坐標為(,1),∴點O和線段CD的中間點所組成的圖形G即線段C′D′的縱坐標是1,橫坐標-1≤x≤

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論