2024屆河南省平頂山市、許昌市、汝州高三下學(xué)期4月調(diào)研測試數(shù)學(xué)試題_第1頁
2024屆河南省平頂山市、許昌市、汝州高三下學(xué)期4月調(diào)研測試數(shù)學(xué)試題_第2頁
2024屆河南省平頂山市、許昌市、汝州高三下學(xué)期4月調(diào)研測試數(shù)學(xué)試題_第3頁
2024屆河南省平頂山市、許昌市、汝州高三下學(xué)期4月調(diào)研測試數(shù)學(xué)試題_第4頁
2024屆河南省平頂山市、許昌市、汝州高三下學(xué)期4月調(diào)研測試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

2024屆河南省平頂山市、許昌市、汝州高三下學(xué)期4月調(diào)研測試數(shù)學(xué)試題.doc 免費下載

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆河南省平頂山市、許昌市、汝州高三下學(xué)期4月調(diào)研測試數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的二項展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-282.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.53.已知,,,則()A. B. C. D.4.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.175.設(shè),隨機變量的分布列是01則當(dāng)在內(nèi)增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大6.設(shè)集合,,若,則()A. B. C. D.7.點為不等式組所表示的平面區(qū)域上的動點,則的取值范圍是()A. B. C. D.8.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.9.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.10.有一改形塔幾何體由若千個正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.411.已知,,是平面內(nèi)三個單位向量,若,則的最小值()A. B. C. D.512.某校為提高新入聘教師的教學(xué)水平,實行“老帶新”的師徒結(jié)對指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負(fù)責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對方式共有()種.A.360 B.240 C.150 D.120二、填空題:本題共4小題,每小題5分,共20分。13.已知兩圓相交于兩點,,若兩圓圓心都在直線上,則的值是________________.14.已知實數(shù)x,y滿足(2x-y)2+4y15.若曲線(其中常數(shù))在點處的切線的斜率為1,則________.16.二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常數(shù)項為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知A是拋物線E:y2=2px(p>0)上的一點,以點A和點B(2,0)為直徑兩端點的圓C交直線x=1于M,N兩點.(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點為P,Q,點G為PQ的中點,O為坐標(biāo)原點,求直線OG斜率的取值范圍.18.(12分)已知函數(shù),當(dāng)時,有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.19.(12分)已知函數(shù),其中e為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調(diào)性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.20.(12分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對邊分別為,且,求的面積.21.(12分)已知函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,,且,為的導(dǎo)函數(shù),設(shè),求的取值范圍,并求取到最小值時所對應(yīng)的的值.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),為實數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線與曲線交于,兩點,線段的中點為.(1)求線段長的最小值;(2)求點的軌跡方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數(shù)是,故選A.考點:二項式定理的應(yīng)用.2、B【解析】

利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.3、B【解析】

利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.4、C【解析】

首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當(dāng)時,滿足,∴實數(shù)可以為8.故選:C【點睛】本題考查對數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.5、C【解析】

,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.6、A【解析】

根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.7、B【解析】

作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結(jié)論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義結(jié)合斜率公式是解決本題的關(guān)鍵.8、A【解析】

先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.9、C【解析】

由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域為,對恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當(dāng)時,,此時函數(shù)單調(diào)遞增;當(dāng)時,,此時函數(shù)單調(diào)遞減.所以,.故選:C.【點睛】本題考查代數(shù)式最值的計算,涉及指對同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.10、A【解析】

則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【點睛】本小題主要考查正方體有關(guān)計算,屬于基礎(chǔ)題.11、A【解析】

由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點間的距離的幾何意義可求出結(jié)果.【詳解】解:設(shè),,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標(biāo)、模的運算,利用整體代換,再結(jié)合距離公式求解,屬于難題.12、C【解析】

可分成兩類,一類是3個新教師與一個老教師結(jié)對,其他一新一老結(jié)對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結(jié)對,有種結(jié)對結(jié)對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結(jié)對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對這個事情,是先分類還是先分步,確定方法后再計數(shù).本題中有一個平均分組問題.計數(shù)時容易出錯.兩組中每組中人數(shù)都是2,因此方法數(shù)為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上,列出方程解得即可得到結(jié)論.【詳解】由,,設(shè)的中點為,根據(jù)題意,可得,且,解得,,,故.故答案為:.【點睛】本題考查相交弦的性質(zhì),解題的關(guān)鍵在于利用相交弦的性質(zhì),即兩圓的連心線垂直平分相交弦,屬于基礎(chǔ)題.14、2【解析】

直接利用柯西不等式得到答案.【詳解】根據(jù)柯西不等式:2x-y2+4y當(dāng)2x-y=2y,即x=328故答案為:2.【點睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.15、【解析】

利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.16、【解析】

由二項式系數(shù)性質(zhì)求出,由二項展開式通項公式得出常數(shù)項的項數(shù),從而得常數(shù)項.【詳解】由題意,.展開式通項為,由得,∴常數(shù)項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數(shù)的性質(zhì),掌握二項展開式通項公式是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)設(shè)A的坐標(biāo)為A(x0,y0),由題意可得圓心C的坐標(biāo),求出C到直線x=1的距離.由半個弦長,圓心到直線的距離及半徑構(gòu)成直角三角形可得p的值,進而求出拋物線的方程;(2)將拋物線的方程與圓的方程聯(lián)立可得韋達定理,進而求出中點G的坐標(biāo),再求出直線OG的斜率的表達式,換元可得斜率的取值范圍.【詳解】(1)設(shè)A(x0,y0)且y02=2px0,則圓心C(),圓C的直徑|AB|,圓心C到直線x=1的距離d=|1|=||,因為|MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以拋物線的方程為:y2=4x;(2)聯(lián)立拋物線與圓的方程整理可得x2﹣2(5﹣p)x+16=0,△>0,設(shè)P(x1,y1),Q(x2,y2),則x1+x2=2(5﹣p),x1x2=16,所以中點G的橫坐標(biāo)xG=5﹣p,yG(),所以kOG(0<P<1),令t=5﹣p(t∈(4,5)),則kOG(),解得0<kOG,所以直線OG斜率的取值范圍(0,).【點睛】本題考查拋物線的性質(zhì)及直線與拋物線的綜合,換元方法的應(yīng)用,屬于中檔題.18、(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】

(1)由題意得到關(guān)于實數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當(dāng)時,有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當(dāng)時,函數(shù)取得極小值,極小值為.當(dāng)時,有極大值3.【點睛】本題主要考查了函數(shù)的極值的概念,以及利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導(dǎo)數(shù)與原函數(shù)的關(guān)系,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.19、(1)函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2).【解析】

(1)由題可得,結(jié)合的范圍判斷的正負(fù),即可求解;(2)結(jié)合導(dǎo)數(shù)及函數(shù)的零點的判定定理,分類討論進行求解【詳解】(1),①當(dāng)時,,∴函數(shù)在內(nèi)單調(diào)遞增;②當(dāng)時,令,解得或,當(dāng)或時,,則單調(diào)遞增,當(dāng)時,,則單調(diào)遞減,∴函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為(2)(Ⅰ)當(dāng)時,所以在上無零點;(Ⅱ)當(dāng)時,,①若,即,則是的一個零點;②若,即,則不是的零點(Ⅲ)當(dāng)時,,所以此時只需考慮函數(shù)在上零點的情況,因為,所以①當(dāng)時,在上單調(diào)遞增。又,所以(?。┊?dāng)時,在上無零點;(ⅱ)當(dāng)時,,又,所以此時在上恰有一個零點;②當(dāng)時,令,得,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,因為,,所以此時在上恰有一個零點,綜上,【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間,考查利用導(dǎo)數(shù)處理零點個數(shù)問題,考查運算能力,考查分類討論思想20、(1);(2)或【解析】

(1)利用平面向量數(shù)量積的坐標(biāo)運算可得,利用正弦函數(shù)的周期性即可求解;(2)由(1)可求,結(jié)合范圍,可求的值,由余弦定理可求的值,進而根據(jù)三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當(dāng)時,由余弦定理得即,解得.此時.當(dāng)時,由余弦定理得.即,解得.此時.【點睛】本題主要考查了平面向量數(shù)量積的坐標(biāo)運算、正弦函數(shù)的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和分類討論思想,屬于基礎(chǔ)題.21、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)的取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論