版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共4頁2024年四川省涼山彝族自治州寧南三峽白鶴灘學校數(shù)學九年級第一學期開學調研試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)菱形,矩形,正方形都具有的性質是()A.四條邊相等,四個角相等B.對角線相等C.對角線互相垂直D.對角線互相平分2、(4分)如圖所示,購買一種蘋果,所付款金額(單元:元)與購買量(單位:千克)之間的函數(shù)圖像由線段和射線組成,則一次購買千克這種蘋果,比分五次購買,每次購買千克這種蘋果可節(jié)?。ǎ〢.元 B.元 C.元 D.元3、(4分)如圖,ABCD是一張平行四邊形紙片,要求利用所學知識作出一個菱形,甲、乙兩位同學的作法如下:則關于甲、乙兩人的作法,下列判斷正確的為()A.僅甲正確 B.僅乙正確 C.甲、乙均正確 D.甲、乙均錯誤4、(4分)某校八班名同學在分鐘投籃測試中的成績如下:,,,,,(單位:個),則這組數(shù)據的中位數(shù)、眾數(shù)分別是()A., B., C., D.,5、(4分)如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PE⊥AB于E,PF⊥AC于F.則EF的最小值為()A.4 B.4.8 C.5.2 D.66、(4分)隨著電子制造技術的不斷進步,電子元件的尺寸大幅度縮小,在芯片上某種電子元件大約只有0.0000007(毫米),數(shù)據0.0000007用科學記數(shù)法表示為()A. B. C. D.7、(4分)如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點,若AB=8,則CD的長是()A.6 B.5 C.4 D.38、(4分)如圖,在?ABCD中,BM是∠ABC的角平分線且交CD于點M,MC=2,?ABCD的周長是16,則DM等于()A.1 B.2 C.3 D.4二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)已知關于的分式方程的解為負數(shù),則的取值范圍是.10、(4分)已如邊長為的正方形ABCD中,C(0,5),點A在x軸上,點B在反比例函數(shù)y=(x>0,m>0)的圖象上,點D在反比例函數(shù)y=(x<0,n<0)的圖象上,那么m+n=______.11、(4分)如圖,直線l過正方形ABCD的頂點B,點A、C到直線l的距離AE、CF分別是1cm、2cm,則線段EF的長為______cm.12、(4分)如圖.將平面內Rt△ABC繞著直角頂點C逆時針旋轉90°得到Rt△EFC.若AC=2,BC=1,則線段BE的長為__________.13、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=1.作一邊的垂直平分線交另一邊于點D,則CD的長是______.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,在中,點、分別是、的中點,平分,交于點,交于點.(1)求證:四邊形是菱形;(2)若,,求四邊形的周長.15、(8分)如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉90°后,得到△ABQ,連接EQ,求證:(1)EA是∠QED的平分線;(1)EF1=BE1+DF1.16、(8分)學校為了更新體育器材,計劃購買足球和籃球共100個,經市場調查:購買2個足球和5個籃球共需600元;購買3個足球和1個籃球共需380元。(1)請分別求出足球和籃球的單價;(2)學校去采購時恰逢商場做促銷活動,所有商品打九折,并且學校要求購買足球的數(shù)量不少于籃球數(shù)量的3倍,設購買足球a個,購買費用W元。①寫出W關于a的函數(shù)關系式,②設計一種實際購買費用最少的方案,并求出最少費用。17、(10分)小明想利用太陽光測量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設計了一種測量方案,具體測量情況如下:如圖,小明邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m.(點A,E,C在同一直線上),已知小明的身高EF是1.7m,請你幫小明求出樓高AB.(結果精確到0.1m)18、(10分)如圖所示,平行四邊形中,和的平分線交于邊上一點,(1)求的度數(shù).(2)若,則平行四邊形的周長是多少?B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,平行四邊形中,,,∠,點是的中點,點在的邊上,若為等腰三角形,則的長為__________.20、(4分)數(shù)據15、19、15、18、21的中位數(shù)為_____.21、(4分)如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于MN兩點,作直線MN交AD于點E,則△CDE的周長是_____.22、(4分)若一組數(shù)據,,,,的平均數(shù)是,則__________.,這組數(shù)據的方差是_________.23、(4分)已知圓錐的側面積為6兀,側面展開圖的圓心角為60o,則該圓錐的母線長是________。二、解答題(本大題共3個小題,共30分)24、(8分)如圖,在△ABC中,∠ACB=90°,AC=BC,點E是BC上一點(不與點B,C重合),點M是AE上一點(不與點A,E重合),連接并延長CM交AB于點G,將線段CM繞點C按順時針方向旋轉90°,得到線段CN,射線BN分別交AE的延長線和GC的延長線于D,F(xiàn).(1)求證:△ACM≌△BCN;(2)求∠BDA的度數(shù);(3)若∠EAC=15°,∠ACM=60°,AC=+1,求線段AM的長.25、(10分)如圖,直線與直線交于點A,點A的橫坐標為,且直線與x軸交于點B,與y軸交于點D,直線與y軸交于點C.(1)求點A的坐標及直線的函數(shù)表達式;(2)連接,求的面積.26、(12分)某學校為改善辦學條件,計劃采購A、B兩種型號的空調,已知采購3臺A型空調和2臺B型空調,需費用39000元;4臺A型空調比5臺B型空調的費用多6000元.(1)求A型空調和B型空調每臺各需多少元;(2)若學校計劃采購A、B兩種型號空調共30臺,且A型空調的臺數(shù)不少于B型空調的一半,兩種型號空調的采購總費用不超過217000元,該校共有哪幾種采購方案?(3)在(2)的條件下,采用哪一種采購方案可使總費用最低,最低費用是多少元?
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、D【解析】試題解析:A、不正確,矩形的四邊不相等,菱形的四個角不相等;B、不正確,菱形的對角線不相等;C、不正確,矩形的對角線不垂直;D、正確,三者均具有此性質;故選D.2、B【解析】
可由函數(shù)圖像計算出2千克以內每千克的價錢,超出2千克后每千克的價錢,再分別計算出一次購買千克和分五次購買各自所付款金額.【詳解】解:由圖像可得2千克以內每千克的價錢為:(元),超出2千克后每千克的價錢為:(元),一次購買千克所付款金額為:(元),分五次購買所付款金額為:(元),可節(jié)省(元).本題考查了函數(shù)的圖像,正確從函數(shù)圖像獲取信息是解題的關鍵.3、C【解析】試題解析:根據甲的作法作出圖形,如下圖所示.∵四邊形ABCD是平行四邊形,∴AD∥BC,∵EF是AC的垂直平分線,在和中,∴≌,又∵AE∥CF,∴四邊形AECF是平行四邊形.∴四邊形AECF是菱形.故甲的作法正確.根據乙的作法作出圖形,如下圖所示.∵AD∥BC,∴∠1=∠2,∠6=∠7.∵BF平分,AE平分∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∵AF∥BE,且∴四邊形ABEF是平行四邊形.∵∴平行四邊形ABEF是菱形.故乙的作法正確.故選C.點睛:菱形的判定方法:有一組鄰邊相等的平行四邊形是菱形.對角線互相垂直的平行四邊形是菱形.四條邊相等的平行四邊形是菱形.4、D【解析】
根據中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據,注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】解:把數(shù)據從小到大的順序排列為:2,1,1,8,10;在這一組數(shù)據中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.處于中間位置的數(shù)是1,那么由中位數(shù)的定義可知,這組數(shù)據的中位數(shù)是1.故選:D.此題考查中位數(shù)與眾數(shù)的意義,掌握基本概念是解決問題的關鍵5、B【解析】
試題解析:如圖,連接PA.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于點E,PF⊥AC于點F.∴∠AEP=∠AFP=90°,∴四邊形PEAF是矩形.∴AP=EF.∴當PA最小時,EF也最小,即當AP⊥CB時,PA最小,∵AB?AC=BC?AP,即AP==4.8,∴線段EF長的最小值為4.8;故選B.考點:1.勾股定理、矩形的判定與性質、垂線段最短.6、C【解析】
科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.本題0.0000001<1時,n為負數(shù).【詳解】0.0000001=1×10-1.
故選C.此題考查的是電子原件的面積,可以用科學記數(shù)法表示,一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.7、C【解析】
根據直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:,是的中點,.故選:.本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,熟記性質是解題的關鍵.8、D【解析】
根據BM是∠ABC的平分線和AB∥CD,求出BC=MC=2,根據?ABCD的周長是16,求出CD=6,得到DM的長.【詳解】解:∵BM是∠ABC的平分線,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵?ABCD的周長是16,∴BC+CD=8,∴CD=6,則DM=CD﹣MC=4,故選:D.本題考查的是平行四邊形的性質和角平分線的定義,根據平行四邊形的對邊相等求出BC+CD是解題的關鍵,注意等腰三角形的性質的正確運用.二、填空題(本大題共5個小題,每小題4分,共20分)9、且.【解析】試題分析:分式方程去分母得:.∵分式方程解為負數(shù),∴.由得和∴的取值范圍是且.考點:1.分式方程的解;2.分式有意義的條件;3.解不等式;4.分類思想的應用.10、±5【解析】
由勾股定理可求點A坐標,分兩種情況討論,利用全等三角形的判定和性質求出B、D的坐標,即可求解.【詳解】解:設點A(x,0)∴AC2=OA2+OC2,∴26=25+OA2,∴OA=1∴點A(1,0),或(-1,0)當點A(1,0)時,如圖,過點B作BF⊥x軸,過點C作CE⊥y軸,與BF交于點E,過點D作DH⊥x軸,交CE于點G,∵∠CBE+∠ABF=90°,且∠CBE+∠ECB=90°∴∠ECB=∠ABF,且BC=AB,∠E=∠AFB=90°∴△ABF≌△BCE(AAS)∴BE=AF,BF=CE∵OF=OA+AF∴CE=OF=1+BE=BF∴BF+BE=1+BE+BE=5∴BE=2,∴BF=3∴點B坐標(3,3)∴m=3×3=9,∵A(1,0),C(0,5),B(3,3),∴點D(1+0-3,0+5-3),即(-2,2)∴n=-2×2=-4∴m+n=5若點A(-1,0)時,同理可得:B(2,2),D(-3,3),∴m=4,n=-9∴m+n=-5故答案為:±5本題考查了反比例函數(shù)圖象上點的坐標特征,正方形的性質,全等三角形的判定和性質,利用分類討論思想解決問題和利用方程思想解決問題是本題的關鍵.11、3【解析】∵四邊形ABCD為正方形,∴AB=BC,∠ABC=90°.∵AE⊥l,CF⊥l,∴∠E=∠F=90°,∠EAB+∠ABE=90°,∠FBC+∠BCF=90°.∵∠ABE+∠ABC+∠FBC=180°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC.在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF=2cm,BF=AE=1cm,∴EF=BE+BF=2+1=3cm.故答案為3.12、1【解析】試題解析:∵Rt△ABC繞著直角頂點C逆時針旋轉90°得到Rt△EFC,∴CE=CA=2,∠ECF=∠ACB=90°,∴點E、C、B共線,∴BE=EC+BC=2+1=1.13、或【解析】
分兩種情況:①當作斜邊AB的垂直平分線PQ,與BC交于點D時,連接AD由PQ垂直平分線段AB,推出DA=DB,設DA=DB=x,在Rt△ACD中,∠C=90°,根據AD2=AC2+CD2構建方程即可解決問題;②當作直角邊的垂直平分線PQ,與斜邊AB交于點D時,連接CD,根據直角三角形斜邊上的中線性質求得CD.【詳解】解:當作斜邊AB的垂直平分線PQ,與BC交于點D時,連接AD.∵PQ垂直平分線段AB,∴DA=DB,設DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(1-x)2,解得x=,∴CD=BC-DB=1-=;當作直角邊的垂直平分線PQ或P′Q′,都與斜邊AB交于點D時,連接CD,則D是AB的中點,∴CD=AB=,綜上可知,CD=或.故答案為:或.本題考查基本作圖,線段的垂直平分線的性質,勾股定理等知識,直角三角形斜邊上的中線等于斜邊的一半,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.三、解答題(本大題共5個小題,共48分)14、(1)見解析;(2)8.【解析】
(1)由三角形中位線定理可得BC=2DE,DE∥BC,且FG∥AB,可證四邊形BDFG是平行四邊形,由角平分線的性質和平行線的性質可得DF=DB,即可得四邊形BDFG是菱形;(2)由菱形的性質可得DF=BG=GF=BD,由BC=2DE,可求BG的長,即可求四邊形BDFG的周長.【詳解】證明:(1)∵點D、E分別是AB、AC的中點,∴BC=2DE,DE∥BC,且FG∥AB,∴四邊形BDFG是平行四邊形,∵BF平分∠ABC,∴∠DBF=∠GBF,∵DE∥BC,∴∠GBF=∠DFB,∴∠DFB=∠DBF,∴DF=DB,∴四邊形BDFG是菱形;(2)∵四邊形BDFG是菱形;∴DF=BG=GF=BD∵BC=2DE∴BG+4=2(BG+1)∴BG=2,∴四邊形BDFG的周長=4×2=8本題考查了菱形的性質和判定,三角形中位線定理,熟練運用菱形的性質是本題的關鍵.15、詳見解析.【解析】
(1)、直接利用旋轉的性質得出△AQE≌△AFE(SAS),進而得出∠AEQ=∠AEF,即可得出答案;(1)、利用(1)中所求,再結合勾股定理得出答案.【詳解】(1)、∵將△ADF繞點A順時針旋轉90°后,得到△ABQ,∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分線;(1)、由(1)得△AQE≌△AFE,∴QE=EF,在Rt△QBE中,QB1+BE1=QE1,則EF1=BE1+DF1.考點:(1)、旋轉的性質;(1)、正方形的性質.16、(1)足球每個100元,籃球每個80元;(2)①W=18a+7200;②足球75個,籃球25個,費用最低,最低費用為8550元【解析】
(1)根據“購買金額=足球數(shù)量×足球單價+籃球的數(shù)量×籃球單價”,在兩種情況下分別列方程,組成方程組,解方程組即可;(2)①設購買足球a個,則購買籃球的數(shù)量為(100-a)個,則總費用(W)=足球數(shù)量×足球單價×0.9+籃球的數(shù)量×籃球單價×0.9,據此列函數(shù)式整理化簡即可;②
根據購買足球的數(shù)量不少于籃球數(shù)量的3倍,
且足球的數(shù)量不超過總數(shù)100,分別列一元一次不等式,組成不等式組,解不等式組求出a的范圍;由于W和a的一次函數(shù),k=18>0,W隨a增大而增大,隨a的減小而減小,所以當a取最小值a時,W值也為最小,從而求出W的最小值,即最低費用.【詳解】(1)解:設足球每個x元,籃球每個y元,由題意得解得:答:足球每個100元,籃球每個80元(2)解:①W=100×0.9a+80×0.9(100-a)=18a+7200,答:W關于a的函數(shù)關系式為W=18a+7200,②由題意得
,解得:75≤a≤100∵W=18a+7200,W隨a的增大而增大,∴a=75時,W最小=18×75+7200=8550元,此時,足球75個,籃球25個,費用最低,最低費用為8550元.此題主要考查一次函數(shù)的應用,解題的關鍵是根據題意求出函數(shù)關系式,熟知一次函數(shù)的圖像與性質.17、21.1米.【解析】試題分析:將實際問題轉化為數(shù)學問題進行解答;解題時要注意構造相似三角形,利用相似三角形的相似比,列出方程,通過解方程求解即可.解:過點D作DG⊥AB,分別交AB、EF于點G、H,∵AB∥CD,DG⊥AB,AB⊥AC,∴四邊形ACDG是矩形,∴EH=AG=CD=1.2,DH=CE=1.8,DG=CA=31,∵EF∥AB,∴,由題意,知FH=EF﹣EH=1.7﹣1.2=1.5,∴,解得,BG=18.75,∴AB=BG+AG=18.75+1.2=19.95≈21.1.∴樓高AB約為21.1米.考點:相似三角形的應用.18、(1);(2)平行四邊形的周長是.【解析】
(1)根據∠BEC=180°﹣(∠EBC+∠ECB),把∠EBC+∠ECB用角平分線定義轉化為∠ABC與∠DCB和的一半即可;(2)根據角平分線和平行線得到AE=AB,DE=DC,由此可得平行四邊形ABCD周長=6AB.【詳解】解:(1)∵四邊形是平行四邊形又∵平分和.∴∠BEC=180°﹣(∠EBC+∠ECB)=90°;(2)在中,.又,同理:∵平行四邊形中,,∴平行四邊形的周長是.本題主要考查了平行四邊形的性質、勾股定理,解題的關鍵是通過角平分線和平行線轉化線段.一、填空題(本大題共5個小題,每小題4分,共20分)19、或或1【解析】
根據點P所在的線段分類討論,再分析每種情況下腰的情況,然后利用直角三角形的性質和勾股定理分別求值即可.【詳解】解:①當點P在AB上時,由∠ABC=120°,此時只能是以∠PBE為頂角的等腰三角形,BP=BE,過點B作BF⊥PE于點F,如下圖所示∴∠FBE=∠ABC=10°,EP=2EF∴∠BEF=90°-∠FBE=30°∵,點是的中點∴BE=在Rt△BEF中,BF=根據勾股定理:EF=∴EP=2EF=;②當點P在AD上時,過點B作BF⊥AB于F,過點P作PG⊥BC,如下圖所示∵∠ABC=120°∴∠A=10°∴∠ABF=90°-∠A=30°在Rt△ABF中AF=,BF=∴BP≥BF>BE,EP≥BF>BE∴此時只能是以∠BPE為頂角的等腰三角形,BP=PE,∴PG=BF=,EG=根據勾股定理:EP=;③當點P在CD上時,過點E作EF⊥CD于F,過點B作BG⊥CD由②可知:BE的中垂線與CD無交點,∴此時BP≠PE∵∠A=10°,四邊形ABCD為平行四邊形∴∠C=10°在Rt△BCG中,∠CBG=90°-∠C=30°,CG=根據勾股定理:BG=∴BP≥BG>BE∵EF⊥CD,BG⊥CD,點E為BC的中點∴EF為△BCG的中位線∴EF=∴此時只能是以∠BEP為頂角的等腰三角形,BE=PE=1.綜上所述:的長為或或1.故答案為:或或1此題考查的是等腰三角形的性質、直角三角形的性質和勾股定理,掌握三線合一、30°所對的直角邊是斜邊的一半、利用勾股定理解直角三角形和分類討論的數(shù)學思想是解決此題的關鍵.20、1【解析】
將這五個數(shù)排序后,可知第3位的數(shù)是1,因此中位數(shù)是1.【詳解】將這組數(shù)據排序得:15,15,1,19,21,處于第三位是1,因此中位數(shù)是1,故答案為:1.考查中位數(shù)的意義和求法,將一組數(shù)據排序后處在中間位置的一個數(shù)或兩個數(shù)的平均數(shù)是中位數(shù).21、1【解析】
利用垂直平分線的作法得MN垂直平分AC,則EA=EC,利用等線段代換得到△CDE的周長=AD+CD,然后根據平行四邊形的性質可確定周長的值.【詳解】解:利用作圖得MN垂直平分AC,∴EA=EC,∴△CDE的周長=CE+CD+ED=AE+ED+CD=AD+CD,∵四邊形ABCD為平行四邊形,∴AD=BC=6,CD=AB=4,∴△CDE的周長=6+4=1.故答案為1.本題考查了作圖?基本作圖,也考查了平行四邊形的性質.解題的關鍵是熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).22、【解析】
根據平均數(shù)的計算方法可求出a,然后根據方差公式求方差即可.【詳解】∵,,,,的平均數(shù)是,∴1+3+a+2+5=3×5,∴a=4,S2=[(1-3)2+(3-3)2+(4-3)2+(2-3)2+(5-3)2]÷5=2.故答案為:4,2.本題考查了算術平均數(shù)和方差的計算,熟練掌握計算公式是解答本題的關鍵.算術平均數(shù)的計算公式是:,方差的計算公式為:.23、6【解析】
根據扇形的面積計算公式:,把相應數(shù)值代入即可.【詳解】解:設母線長為r,圓錐的側面展開后是扇形,側面積=6π,
∴r=6cm,
故答案是6cm.本題考查了圓錐的計算,利用了扇形的面積公式求解,解題的關鍵是牢記圓錐的有關公式,難度不大.二、解答題(本大題共3個小題,共30分)24、(1)見解析;(2)∠BDA=90°;(3)AM=.【解析】
(1)根據題意可知∠ACM=∠BCN,再利用SAS即可證明(2)根據(1)可求出∠ACE=∠BDE=90°,即可解答(3)作MH⊥AC交AC于H.在AC上取一點,使得AQ=MQ,設EH=a.可知AQ=QM=2a,QH=a,再求出a的值,利用勾股定理即可解答【詳解】(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN,在△MAC和△NBC中,∴△MAC≌△NBC(SAS).(2)∵△MAC≌△NBC,∴∠NBC=∠MAC∵∠AEC=∠BED,∴∠ACE=∠BDE=90°,∴∠BDA=90°.(3)作MH⊥AC交AC于H.在AC上取一點,使得AQ=MQ,設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度施工現(xiàn)場安全監(jiān)測服務合同
- 2024版買賣摩托車合同協(xié)議書
- 2025版貸款購房房屋裝修工程智能家居系統(tǒng)維護合同3篇
- 2024年度專業(yè)房地產代理買賣合作協(xié)議2篇
- 2024教室裝修合同樣本
- 2025年度酒店客房租賃與酒店設施設備租賃及維護合同2篇
- 2025版環(huán)保產業(yè)技術轉移轉化合作協(xié)議3篇
- 二零二五年度臨時工就業(yè)援助協(xié)議3篇
- 2024年金融機構不良資產清收委托協(xié)議3篇
- 2024年適用型潔具采購協(xié)議樣本版B版
- 色粉-MSDS物質安全技術資料
- 骨科學研究生復試真題匯總版
- 石油化工鋼結構工程施工及驗收規(guī)范
- 遼海版六年級音樂上冊第8單元《3. 演唱 姐妹們上場院》教學設計
- 形勢任務教育宣講材料第一講——講上情
- 物業(yè)安全員考核實施細則
- 中國地質大學(武漢)教育發(fā)展基金會籌備成立情況報告
- 第四章破產法(破產法)教學課件
- PE拖拉管施工方案標準版
- 7725i進樣閥說明書
- 鐵路建設項目施工企業(yè)信用評價辦法(鐵總建設〔2018〕124號)
評論
0/150
提交評論