版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆黑龍江省齊齊哈爾市數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù).設(shè)命題的定義域?yàn)?,命題的值域?yàn)?若為真,為假,則實(shí)數(shù)的取值范圍是()A. B.C. D.2.函數(shù)直線與的圖象相交于A、B兩點(diǎn),則的最小值為()A.3 B.C. D.3.對于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項(xiàng)和為4.若存在過點(diǎn)(0,-2)的直線與曲線和曲線都相切,則實(shí)數(shù)a的值是()A.2 B.1C.0 D.-25.已知函數(shù)(且,)的一個極值點(diǎn)為2,則的最小值為()A. B.C. D.76.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對稱點(diǎn)為,則()A.-4 B.-10C.4 D.107.已知等比數(shù)列的前3項(xiàng)和為3,,則()A. B.4C. D.18.已知隨機(jī)變量服從正態(tài)分布,且,則()A.0.16 B.0.32C.0.68 D.0.849.拋物線有一條重要的性質(zhì):平行于拋物線的軸的光線,經(jīng)過拋物線上的一點(diǎn)反射后經(jīng)過它的焦點(diǎn).反之,從焦點(diǎn)發(fā)出的光線,經(jīng)過拋物線上的一點(diǎn)反射后,反射光線平行于拋物線的軸.已知拋物線,從點(diǎn)發(fā)出一條平行于x軸的光線,經(jīng)過拋物線兩次反射后,穿過點(diǎn),則光線從A出發(fā)到達(dá)B所走過的路程為()A.8 B.10C.12 D.1410.南北朝時期杰出的數(shù)學(xué)家祖沖之的兒子祖暅在數(shù)學(xué)上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個平行平面之間的幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,現(xiàn)有一個圓柱體和一個長方體,它們的底面面積相等,高也相等,若長方體的底面周長為,圓柱體的體積為,根據(jù)祖暅原理,可推斷圓柱體的高()A.有最小值 B.有最大值C.有最小值 D.有最大值11.在等比數(shù)列中,,公比,則()A. B.6C. D.212.瑞士數(shù)學(xué)家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn),其歐拉線方程為,則頂點(diǎn)C的坐標(biāo)是()A.() B.()C.() D.()二、填空題:本題共4小題,每小題5分,共20分。13.如圖,把正方形紙片沿對角線折成直二面角,則折紙后異面直線,所成的角為___________.14.如圖,在棱長都為的平行六面體中,,,兩兩夾角均為,則________;請選擇該平行六面體的三個頂點(diǎn),使得經(jīng)過這三個頂點(diǎn)的平面與直線垂直.這三個頂點(diǎn)可以是________15.如圖,正方形ABCD的邊長為8,取正方形ABCD各邊的中點(diǎn)E,F(xiàn),G,H,作第2個正方形EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個正方形IJKL.依此方法一直繼續(xù)下去.①從正方形ABCD開始,第7個正方形的邊長為___;②如果這個作圖過程可以一直繼續(xù)下去,那么作到第n個正方形,這n個正方形的面積之和為___.16.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的中心為原點(diǎn),焦點(diǎn),均在軸上,且,的面積為,則的標(biāo)準(zhǔn)方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,且.(1)求;(2)若,的面積為,求.18.(12分)在平面直角坐標(biāo)系xOy中,圓O以原點(diǎn)為圓心,且經(jīng)過點(diǎn).(1)求圓O的方程;(2)若直線與圓O交于兩點(diǎn)A,B,求弦長.19.(12分)甲、乙等6個班級參加學(xué)校組織廣播操比賽,若采用抽簽的方式隨機(jī)確定各班級的出場順序(序號為1,2,…,6),求:(1)甲、乙兩班級的出場序號中至少有一個為奇數(shù)的概率;(2)甲、乙兩班級之間的演出班級(不含甲乙)個數(shù)X的分布列與期望20.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0(1)求角B的大??;(2)若b=4,△ABC的面積為,求a+c的值21.(12分)在中,角A,B,C所對的邊分別為a,b,c,且,,.(1)求角B;(2)求a,c的值及的面積.22.(10分)已知圓.(1)過點(diǎn)作圓的切線,求切線的方程;(2)若直線過點(diǎn)且被圓截得的弦長為2,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)一元二次不等式恒成立和二次函數(shù)值域可求得為真命題時的取值范圍,根據(jù)和的真假性可知一真一假,分類討論可得結(jié)果.【詳解】若命題為真,則在上恒成立,,;若命題為真,則的值域包含,則或,;為真,為假,一真一假,若真假,則;若假真,則;綜上所述:實(shí)數(shù)的取值范圍為.故選:C.2、C【解析】先求出AB坐標(biāo),表示出,規(guī)定函數(shù),其中,利用導(dǎo)數(shù)求最小值.【詳解】聯(lián)立解得可得點(diǎn).聯(lián)立解得可得點(diǎn).由題意可得解得,令,其中,∴.∴函數(shù)單調(diào)遞減;.因此,的最小值為故選:C【點(diǎn)睛】距離的最值求解:(1)幾何法求最值;(2)代數(shù)法:表示出距離,利用函數(shù)求最值.3、B【解析】由等差數(shù)列的通項(xiàng)公式判定選項(xiàng)A正確;利用等比數(shù)列的通項(xiàng)公式求出,即判定選項(xiàng)B錯誤;利用對數(shù)的運(yùn)算和等差數(shù)列的定義判定選項(xiàng)C正確;利用錯位相減法求和,即判定選項(xiàng)D正確.【詳解】對于A:由條件可得,,即選項(xiàng)A正確;對于B:由條件可得,,即選項(xiàng)B錯誤;對于C:因?yàn)?,所以,則,即數(shù)列是首項(xiàng)和公差均為的等差數(shù)列,即選項(xiàng)C正確;對于D:,設(shè)數(shù)列的前項(xiàng)和為,則,,上面兩式相減可得,所以,即選項(xiàng)D正確.故選:B.4、A【解析】在兩曲線上設(shè)切點(diǎn),得到切線,又因?yàn)椋?,-2)在兩條切線上,列方程即可.【詳解】的導(dǎo)函數(shù)為,的導(dǎo)函數(shù)為,若直線與和的切點(diǎn)分別為(,),,∴過(0,-2)的直線為、,則有,可得故選:A.5、B【解析】求出函數(shù)的導(dǎo)數(shù),由給定極值點(diǎn)可得a與b的關(guān)系,再借助“1”的妙用求解即得.【詳解】對求導(dǎo)得:,因函數(shù)的一個極值點(diǎn)為2,則,此時,,,因,即,因此,在2左右兩側(cè)鄰近的區(qū)域值一正一負(fù),2是函數(shù)的一個極值點(diǎn),則有,又,,于是得,當(dāng)且僅當(dāng),即時取“=”,所以的最小值為.故選:B6、A【解析】根據(jù)關(guān)于平面對稱的點(diǎn)的規(guī)律:橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),即可求出點(diǎn)關(guān)于平面的對稱點(diǎn)的坐標(biāo),再利用向量的坐標(biāo)運(yùn)算求.【詳解】解:由題意,關(guān)于平面對稱的點(diǎn)橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),從而有點(diǎn)關(guān)于對稱的點(diǎn)的坐標(biāo)為(2,?1,-3).故選:A【點(diǎn)睛】本題以空間直角坐標(biāo)系為載體,考查點(diǎn)關(guān)于面的對稱,考查數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題7、D【解析】設(shè)等比數(shù)列公比為,由已知結(jié)合等比數(shù)列的通項(xiàng)公式可求得,,代入即可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,由,得即,又,即又,,解得又等比數(shù)列的前3項(xiàng)和為3,故,即,解得故選:D8、C【解析】根據(jù)對稱性以及概率之和等于1求出,再由即可得出答案.【詳解】∵隨機(jī)變量服從正態(tài)分布,∴故選:C.9、C【解析】利用拋物線的定義求解.【詳解】如圖所示:焦點(diǎn)為,設(shè)光線第一次交拋物線于點(diǎn),第二次交拋物線于點(diǎn),過焦點(diǎn)F,準(zhǔn)線方程為:,作垂直于準(zhǔn)線于點(diǎn),作垂直于準(zhǔn)線于點(diǎn),則,,,,故選:C10、C【解析】由條件可得長方體的體積為,設(shè)長方體的底面相鄰兩邊分別為,根據(jù)基本不等式,可求出底面面積的最大值,進(jìn)而求出高的最小值,得出結(jié)論.【詳解】依題意長方體的體積為,設(shè)圓柱的高為長方體的底面相鄰兩邊分別為,,當(dāng)且僅當(dāng)時,等號成立,.故選:C.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查基本不等式求最值,要認(rèn)真審題,理解題意,屬于基礎(chǔ)題.11、D【解析】利用等比數(shù)列的通項(xiàng)公式求解【詳解】由等比數(shù)列的通項(xiàng)公式得:.故選:D12、A【解析】根據(jù)題意,求得的外心,再根據(jù)外心的性質(zhì),以及重心的坐標(biāo),聯(lián)立方程組,即可求得結(jié)果.【詳解】因?yàn)?,故的斜率,又的中點(diǎn)坐標(biāo)為,故的垂直平分線的方程為,即,故△的外心坐標(biāo)即為與的交點(diǎn),即,不妨設(shè)點(diǎn),則,即;又△的重心的坐標(biāo)為,其滿足,即,也即,將其代入,可得,,解得或,對應(yīng)或,即或,因?yàn)榕c點(diǎn)重合,故舍去.故點(diǎn)的坐標(biāo)為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##30°【解析】過點(diǎn)E作CE∥AB,且使得CE=AB,則四邊形ABEC是平行四邊形,進(jìn)而(或其補(bǔ)角)是所求角,算出答案即可.【詳解】過點(diǎn)E作CE∥AB,且使得CE=AB,則四邊形ABEC是平行四邊形,設(shè)所求角為,于是.設(shè)原正方形ABCD邊長為2,取AC的中點(diǎn)O,連接DO,BO,則且,而平面平面,且交于AC,所以平面ABEC,則.易得,,,而則于是,,.在中,,取DE的中點(diǎn)F,則,所以,即,于是.故答案為:.14、①.②.點(diǎn)或點(diǎn)(填出其中一組即可)【解析】(1)以向量,,為基底分別表達(dá)出向量和,展開即可解決;(2)由上一問可知,用上一問同樣的方法可以證明出,這樣就證明了平面與直線垂直.【詳解】(1)令,,,則,則有,故(2)令,,,則,則有,故故,即又由(1)之,,故直線垂直于平面同理可證直線垂直于平面故答案為:0;點(diǎn)或點(diǎn)15、①.1②.【解析】根據(jù)題意,正方形邊長成等比數(shù)列,正方形的面積等于邊長的平方可得,然后根據(jù)等比數(shù)列的通項(xiàng)公式及等比數(shù)列的前n項(xiàng)和的公式即可求解.【詳解】設(shè)第n個正方形的邊長為,第n個正方形的面積為,則第n個正方形的對角線長為,所以第n+1個正方形的邊長為,,∴數(shù)列{}是首項(xiàng)為,公比為的等比數(shù)列,,∴,即第7個正方形的邊長為1;∴數(shù)列{}是首項(xiàng)為,公比為的等比數(shù)列,故答案為:1;.16、【解析】利用待定系數(shù)法列出關(guān)于的方程解出即可得結(jié)果.【詳解】設(shè)的標(biāo)準(zhǔn)方程為,則解得所以的標(biāo)準(zhǔn)方程為故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由正弦定理得到,兩邊消去公因式得到,化一即可求得角A;(2)因?yàn)椋?,再結(jié)合余弦定理得到結(jié)果.【詳解】(1)由,得,因?yàn)?,所以,整理得:,因,所?(2)因?yàn)?,所以,因?yàn)榧埃?,?【點(diǎn)睛】本題主要考查正弦定理及余弦定理的應(yīng)用以及三角形面積公式,屬于難題.在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當(dāng)條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.18、(1)(2)【解析】(1)根據(jù)兩點(diǎn)距離公式即可求半徑,進(jìn)而得圓方程;(2)根據(jù)直線與圓的弦長公式即可求解【小問1詳解】由,所以圓O的方程為;【小問2詳解】由點(diǎn)O到直線的距離為所以弦長19、(1)(2)X01234p期望為.【解析】(1)求出甲、乙兩班級的出場序號中均為偶數(shù)的概率,進(jìn)而求出答案;(2)求出X的可能取值及相應(yīng)的概率,寫出分布列,求出期望值.【小問1詳解】由題意得:甲、乙兩班級的出場序號中均為偶數(shù)的概率為,故甲、乙兩班級的出場序號中至少有一個為奇數(shù)的概率;【小問2詳解】X的可能取值為0,1,2,3,4,,,,故分布列為:X01234p數(shù)學(xué)期望為20、(1)(2)【解析】(1)利用正弦定理化簡,通過兩角和與差的三角函數(shù)求出,即可得到結(jié)果(2)利用三角形的面積求出,通過由余弦定理求解即可【詳解】解:(1)因?yàn)閎cosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【點(diǎn)睛】本題主要考查了利用正、余弦定理及三角形的面積公式解三角形問題,其中在解有關(guān)三角形的題目時,要有意識地考慮用哪個定理更合適,或是兩個定理都要用.一般地,如果式子中含有角的余弦或邊的二次式時,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到21、(1)(2),,【解析】(1)利用正弦定理化簡已知條件,求得,進(jìn)而求得.(2)利用余弦定理求得和,由此求得三角形的面積.【小問1詳解】由于,∴.又∵,∴.∴.【小問2詳解】∵,且,,,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告營銷合同范本
- 車輛押借款合同
- 網(wǎng)簽版建筑工程合同模板
- 知識產(chǎn)權(quán)(TPR)保護(hù)框架協(xié)議
- 2024年有關(guān)藏品的協(xié)議書范本
- 大學(xué)生靈活就業(yè)協(xié)議書范本
- 工業(yè)用途商品購買合同
- 房地產(chǎn)租賃合同范本合輯
- 技術(shù)服務(wù)合作協(xié)議書范本
- 2024年貨架采購合同
- 部編版語文五年級上冊八單元集體備課
- 除鹽水站純水設(shè)備調(diào)試實(shí)施方案
- 第一單元我的視頻類故事第一節(jié)認(rèn)識數(shù)字故事課件
- 木結(jié)構(gòu)防腐措施及方法
- 小學(xué)綜合實(shí)踐二年級上冊第3單元《主題活動一:發(fā)現(xiàn)影子》教案
- 新北師大版八年級上冊英語(全冊知識點(diǎn)語法考點(diǎn)梳理、重點(diǎn)題型分類鞏固練習(xí))(家教、補(bǔ)習(xí)、復(fù)習(xí)用)
- 蘇教版二年級上冊數(shù)學(xué) 7的乘法口訣 教學(xué)課件
- 統(tǒng)編版 高中歷史 選擇性必修一 第三單元 第9課 近代西方的法律與教化 課件(共53張PPT)
- 功能主義基本理論和思想發(fā)展
- MATLAB SIMULINK講解完整版
- 印尼語常用語
評論
0/150
提交評論