版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題02解二元一次方程組壓軸題四種模型全攻略【類型一代入消元法】例1.(2021·廣東清遠(yuǎn)·二模)解方程組:.【變式訓(xùn)練1】(2022·甘肅蘭州·八年級(jí)期末)解方程組【變式訓(xùn)練2】(2021·上?!とA東政法大學(xué)附屬中學(xué)期末)解方程組:.【變式訓(xùn)練3】(2021·上海市民辦尚德實(shí)驗(yàn)學(xué)校期末)解方程組:.【類型二加減消元法】例2.(2021·上海中學(xué)東校期末)解方程組.【變式訓(xùn)練1】(2021·山西運(yùn)城·八年級(jí)期末)解方程組:【變式訓(xùn)練2】(2021·福建·大同中學(xué)二模)解方程組:.【變式訓(xùn)練3】(2021·上海民辦建平遠(yuǎn)翔學(xué)校七年級(jí)期末)解方程組.【類型三錯(cuò)解復(fù)原問題】例3.(2022·江蘇·七年級(jí)專題練習(xí))解方程組時(shí),兩位同學(xué)的解法如下:解法一:由①﹣②,得3x=﹣3解法二:由②得3x+(x﹣2y)=5③①代入③得3x+2=5(1)反思:上述兩種解題過程中你發(fā)現(xiàn)解法的解題過程有錯(cuò)誤(填“一”或“二”);解二元一次方程組的基本思想.(2)請(qǐng)選擇一種你喜歡的方法解此方程組.【變式訓(xùn)練1】(2021·云南昭通·七年級(jí)期末)判斷下面方程組的解法是否正確,如果全部正確,判斷即可;如果有錯(cuò)誤,請(qǐng)寫出正確的解題過程.解:①×2-②×3,得,解得,把代入方程①,得,解得.∴原方程組的解為【變式訓(xùn)練2】(2021·浙江臺(tái)州·七年級(jí)期末)小明同學(xué)解方程組的過程如下:解:①×2,得2x﹣6y=2③③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以這個(gè)方程組的解是你認(rèn)為他的解法是否正確?若正確,請(qǐng)寫出每一步的依據(jù);若錯(cuò)誤,請(qǐng)寫出正確的解題過程.【變式訓(xùn)練3】(2021·江蘇宿遷·七年級(jí)期末)仔細(xì)閱讀下列內(nèi)容,并回答問題:用代入法解方程組有以下步驟:①由(1)得,
(3)②把(3)代入(1)得,,③整理得,④∴可取一切實(shí)數(shù),原方程組有無數(shù)個(gè)解.(1)選擇:以上解法中,造成錯(cuò)誤的一步是(
)A.①
B.②
C.③
D.④(2)用加減法解這個(gè)方程組.【類型四整體代換思想問題】例4.(2021·山東煙臺(tái)·七年級(jí)期中)閱讀下列材料:小明同學(xué)遇到下列問題:解方程組小明發(fā)現(xiàn)如果用代入消元法或加減消元法求解,運(yùn)算量比較大,容易出錯(cuò).如果把方程組中的(2x+3y)看成一個(gè)整體,把(2x﹣3y)看成一個(gè)整體,通過換元,可以解決問題.以下是他的解題過程:令m=2x+3y,n=2x﹣3y.原方程組化為,解的,把代入m=2x+3y,n=2x﹣3y,得解得所以,原方程組的解為.請(qǐng)你參考小明同學(xué)的做法解方程組:(1);(2).【變式訓(xùn)練1】(2021·湖南湘西·七年級(jí)期末)在課輔活動(dòng)中,老師布置了一道這樣的題:探究方程組:的不同解法.同學(xué)們發(fā)現(xiàn):雖然這個(gè)方程組中x,y的系數(shù)及常數(shù)項(xiàng)的數(shù)值較大,但我們也是可以用教材上學(xué)過的常規(guī)的代入消元法、加減消元法來解出來的,但老師應(yīng)該出題還有深意:此類題是不是還有更好的消元方法呢?小明帶著這個(gè)問題和同學(xué)們進(jìn)行了激烈的討論,并查找了一些課外輔導(dǎo)資料,他們發(fā)現(xiàn)采用下面的解法來消元更簡(jiǎn)單:①﹣②得2x+2y=2,所以x+y=1③.③×35﹣①得3x=﹣3.解得x=﹣1,從而y=2.所以原方程組的解是.請(qǐng)你認(rèn)真觀察方程組的特點(diǎn),也嘗試運(yùn)用小明他們發(fā)現(xiàn)的上述方法解這個(gè)方程組:.【變式訓(xùn)練2】(2021·廣西北?!て吣昙?jí)期中)解方程組時(shí),由于,的系數(shù)及常數(shù)項(xiàng)的數(shù)值較大,如果用常規(guī)的代入消元法、加減消元法來解,不僅計(jì)算量大,而且易出現(xiàn)運(yùn)算錯(cuò)誤.而采用下面的解法則比較簡(jiǎn)單:解:①-②得,所以③.③×35-①得,解得,則.所以原方程組的解是.請(qǐng)你運(yùn)用上述方法解方程組:.【變式訓(xùn)練3】(2021·河南洛陽·七年級(jí)期末)閱讀材料:善于思考的小軍在解方程組時(shí),采用了一種“整體代換”的解法:解:將方程②變形:4x+10y+y=5,即2(2x+5y)+y=5,③把方程①代入③,得2×3+y=5,∴y=﹣1,把y=﹣1代入①,得x=4,∴方程組的解為.請(qǐng)你根據(jù)以上方法解決下列問題:(1)模仿小軍的“整體代換”法解方程組;(2)已知x,y滿足方程組,求xy的值.【課后訓(xùn)練】一、解答題1.(2021·上海民辦建平遠(yuǎn)翔學(xué)校七年級(jí)期末)解方程組.2.(2022·北京鐵路二中七年級(jí)開學(xué)考試)解下列方程組:(1)(2)3.(2021·新疆·博爾塔拉蒙古自治州蒙古中學(xué)七年級(jí)期中)解下列方程組(1)(2)4.(2020·山東泰安·七年級(jí)期末)解方程組:(1)(2)5.(2022·廣東深圳·八年級(jí)期末)解方程組(1);(2).6.(2022·重慶南開中學(xué)八年級(jí)開學(xué)考試)解方程組:(1)(2)7.(2021·河南·開封市第二十七中學(xué)七年級(jí)階段練習(xí))解方程組(1)(2)8.(2022·山東濟(jì)南·八年級(jí)期末)解二元一次方程組:(1)(2)9.(2022·山東青島·八年級(jí)期末)解方程組:(1);(2).10.(2020·重慶市榮昌中學(xué)校七年級(jí)階段練習(xí))解方程(1)(2)(3)(4)11.(2022·云南文山·八年級(jí)期末)解方程組時(shí),兩位同學(xué)的解法如下:解法一:由,得.解法二:由②得③,把①代入③得.(1)反思:上述兩種解題過程中你發(fā)現(xiàn)解法______的解題過程有錯(cuò)誤(填“一”或“二”);(2)請(qǐng)選擇一種你喜歡的方法解此方程組.12.(2022·山西晉中·八年級(jí)期末)下面是小明同學(xué)解二元一次方程組的過程,請(qǐng)你閱讀并完成相應(yīng)的任務(wù):解方程組:解:②×2
,得2x-4y=4
③…………………第一步①+③,得5x=9…………………第二步…………………第三步把代入②,得y=…………………第四步∴原方程組的解為…………………第五步任務(wù)一:①上述材料中小明同學(xué)解二元一次方程組的數(shù)學(xué)方法是(填序號(hào)即可);A.公式法
B.換元法
C.代入法
D.加減法②上述材料中第二步和第四步的基本思想是“消元”,即把“二元”變“一元”,在此過程中體現(xiàn)的數(shù)學(xué)思想是(填序號(hào)即可);A.轉(zhuǎn)化
B.公理化
C.演繹
D.數(shù)形結(jié)合③第步開始出現(xiàn)錯(cuò)誤,這一步錯(cuò)誤的原因是;任務(wù)二:請(qǐng)你直接寫出原方程組的解.13.(2022·江蘇·七年級(jí)專題練習(xí))下面是小穎同學(xué)解二元一次方程組的過程,請(qǐng)認(rèn)真閱讀并完成相應(yīng)的任務(wù).解方程組:.解:①,得③,第一步,②③,得,第二步,.第三步,將代入①,得.第四步,所以,原方程組的解為.第五步.填空:(1)這種求解二元一次方程組的方法叫做______.、代入消元法、加減消元法(2)第______步開始出現(xiàn)錯(cuò)誤,具體錯(cuò)誤是______;(3)直接寫出該方程組的正確解:______.14.(2021·山西·太原師范學(xué)院附屬中學(xué)八年級(jí)階段練習(xí))閱讀材料:在解方程組時(shí),萌萌采用了一種“整體代換”的解法.解:將方程②變形:,即③把方程①代入③得,∴,把代入①,得,∴原方程組的解為.請(qǐng)模仿萌萌的“整體代換”法解方程組15.(2021·遼寧大連·七年級(jí)期末)閱讀下列解方程組的方法,然后解答問題:解方程組時(shí),小明發(fā)現(xiàn)如果用常規(guī)的代入消元法、加減消元法來解,計(jì)算量大,且易出現(xiàn)運(yùn)算錯(cuò)誤,他采用下面的解法則比較簡(jiǎn)單:②①得:,即.③③17得:.④①④得:,代入③得.所以這個(gè)方程組的解是.(1)請(qǐng)你運(yùn)用小明的方法解方程組.(2)猜想關(guān)于、的方程組()的解是______;(3)請(qǐng)你按照上面的規(guī)律寫一個(gè)方程組,使它的解與(2)中方程組的解相同(所寫方程組未知數(shù)的系數(shù)大于100).16.(2021·全國(guó)·九年級(jí)專題練習(xí))仔細(xì)閱讀下面解方程組得方法,然后解決有關(guān)問題:解方程組時(shí),如果直接消元,那將時(shí)很繁瑣的,若采用下面的解法,則會(huì)簡(jiǎn)單很多.解:①?②,得:2x+2y=2,即x+y=1③,③×16,得:16x+16y=16④,②?④,得:x=?1,將x=?1代入③得:y=2,∴方程組的解為:.(1)請(qǐng)你采用上述方法解方程組:(2)請(qǐng)你采用上述方法解關(guān)于x,y的方程組.17.(2021·全國(guó)·七年級(jí)專題練習(xí))閱讀材料:善于思考的小軍在解方程組時(shí),采用了一種“整體代換”的解法:解:將方程②變形:4x+10y+y=5,即2(2x+5y)+y=5③把方程①代入③得:2×3+y=5,∴y=﹣1,所以y=﹣1代入①得x=4,∴方程組的解為,請(qǐng)你解決以下問題:(1)模仿小軍的“整體代換”法解方程組,(2)已知x,y滿足方程組,求x2+4y2的值與xy的值;(3)在(2)的條件下,寫出這個(gè)方程組的所有整數(shù)解.專題02解二元一次方程組壓軸題四種模型全攻略【類型一代入消元法】例1.(2021·廣東清遠(yuǎn)·二模)解方程組:.【答案】【解析】【分析】利用代入消元即可解得.【詳解】解:把代入得,,得,解得,把代入得,,所以,原方程組的解為.【點(diǎn)睛】本題考查了二元一次方程組的解法,二元一次方程組的解法有:代入消元法和加減消元法,靈活運(yùn)用加減消元法或代入消元法解方程是解決本題的關(guān)鍵.【變式訓(xùn)練1】(2022·甘肅蘭州·八年級(jí)期末)解方程組【答案】【解析】【分析】運(yùn)用代入消元法解方程組;【詳解】解:由②式得y=10-4x代入①式得3x-20+8x=1311x=33,x=3,代入②式得y=﹣2,故方程組解為:【點(diǎn)睛】此題考查二元一次方程組的解法:代入消元法是把二元一次方程組中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元;熟記方程的解法是關(guān)鍵.【變式訓(xùn)練2】(2021·上海·華東政法大學(xué)附屬中學(xué)期末)解方程組:.【答案】【解析】【分析】用代入消元法解方程組即可.【詳解】解:,把(1)代入(2),得,解得:x=2,把x=2代入(1),得:y=4,故方程組的解為:【點(diǎn)睛】本題考查了解二元一次方程組,解此題的關(guān)鍵是能把二元一次方程組轉(zhuǎn)化成一元一次方程.【變式訓(xùn)練3】(2021·上海市民辦尚德實(shí)驗(yàn)學(xué)校期末)解方程組:.【答案】【解析】【分析】利用代入消元法,把方程②用x表示y,然后代入方程①,得到關(guān)于x的一元一次方程,求得x,再把x的值代入②得到6+y=5,再求出y即可.【詳解】,把②變形為y=5-2x代入①,則有3x-10+4x=117x=21x=3,把x=3代入②得,解得y=-1,故.【點(diǎn)睛】本題主要考查二元一次方程組的解法,熟練地把二元一次方程組轉(zhuǎn)化為一元一次方程是解題的關(guān)鍵.【類型二加減消元法】例2.(2021·上海中學(xué)東校期末)解方程組.【答案】【解析】【分析】先將二元一次方程去分母變?yōu)?,然后再利用加減消元法解方程組即可.【詳解】原方程可變?yōu)棰凇?得:,①-③得:,把代入②得:,解得:,∴方程組的解為:.【點(diǎn)睛】本題考查了二元一次方程組的解法,其基本思路是消元,消元的方法有:加減消元法和代入消元法兩種,靈活選擇合適的方法是解答本題的關(guān)鍵.【變式訓(xùn)練1】(2021·山西運(yùn)城·八年級(jí)期末)解方程組:【答案】【解析】【分析】運(yùn)用加減消元法求解即可.【詳解】解:②-①得,即③將③代入①得,∴方程組的解為.【點(diǎn)睛】本題主要考查了解二元一次方程組,其基本思想是消元,主要方法有代入消元法和加減消元法.【變式訓(xùn)練2】(2021·福建·大同中學(xué)二模)解方程組:.【答案】【解析】【分析】根據(jù)加減消元法消去y即可解方程.【詳解】解:,①×3+②,得5x=35,解得x=7,把x=7代入①,得y=3,故原方程組的解為.【點(diǎn)睛】本題考查二元一次方程的解法,熟練根據(jù)加減消元法或者代入消元法去掉一個(gè)未知數(shù)是解題的關(guān)鍵.【變式訓(xùn)練3】(2021·上海民辦建平遠(yuǎn)翔學(xué)校七年級(jí)期末)解方程組.【答案】【解析】【分析】利用加減消元法解方程組.【詳解】解:,①×2+②得,,,把代入①得,,,故.【點(diǎn)睛】本題考查加減消元法解二元一次方程組,是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.【類型三錯(cuò)解復(fù)原問題】例3.(2022·江蘇·七年級(jí)專題練習(xí))解方程組時(shí),兩位同學(xué)的解法如下:解法一:由①﹣②,得3x=﹣3解法二:由②得3x+(x﹣2y)=5③①代入③得3x+2=5(1)反思:上述兩種解題過程中你發(fā)現(xiàn)解法的解題過程有錯(cuò)誤(填“一”或“二”);解二元一次方程組的基本思想.(2)請(qǐng)選擇一種你喜歡的方法解此方程組.【答案】(1)一,消元;(2)【解析】【分析】(1)上述兩種解題過程中解法一的解題過程有錯(cuò)誤,解二元一次方程組的基本思想消元思想;(2)用②①,消去,求出,再把的值代入①即可求出.(1)解:上述兩種解題過程中解法一的解題過程有錯(cuò)誤,解二元一次方程組的基本思想消元思想;故答案為:一;消元;(2)解:②①得:,解得,將代入①得:,解得,所以方程組的解為:.【點(diǎn)睛】此題考查了解二元一次方程組,解題的關(guān)鍵是掌握消元的思想和消元的方法,消元的方法有:代入消元法與加減消元法.【變式訓(xùn)練1】(2021·云南昭通·七年級(jí)期末)判斷下面方程組的解法是否正確,如果全部正確,判斷即可;如果有錯(cuò)誤,請(qǐng)寫出正確的解題過程.解:①×2-②×3,得,解得,把代入方程①,得,解得.∴原方程組的解為【答案】【解析】【分析】用加減消元法解二元一次方程組,在兩個(gè)方程作差時(shí)符號(hào)出錯(cuò)了,正確為①②,得,再求解即可.【詳解】解:上述解法不正確.正確解題過程如下:①②,得,解得,把代入方程①,得,解得.原方程組的解為.【點(diǎn)睛】本題考查了二元一次方程組的解,解題的關(guān)鍵是熟練掌握加減消元法解二元一次方程組.【變式訓(xùn)練2】(2021·浙江臺(tái)州·七年級(jí)期末)小明同學(xué)解方程組的過程如下:解:①×2,得2x﹣6y=2③③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以這個(gè)方程組的解是你認(rèn)為他的解法是否正確?若正確,請(qǐng)寫出每一步的依據(jù);若錯(cuò)誤,請(qǐng)寫出正確的解題過程.【答案】錯(cuò)誤,正確過程見解析【解析】【分析】根據(jù)加減消元法求解即可.【詳解】解:錯(cuò)誤,①×2,得2x-6y=2③,③-②,得-6y+y=2-7,-5y=-5,y=1,把y=1代入①得x-3×1=1,x=4,所以這個(gè)方程組的解為.【點(diǎn)睛】本題考查了加減消元法求解二元一次方程組,需要注意的是運(yùn)用這種方法需滿足其中一個(gè)未知數(shù)的系數(shù)相同或互為相反數(shù),若不具備這種特征,則根據(jù)等式的性質(zhì)將其中一個(gè)方程變形或?qū)蓚€(gè)方程都變形,使其具備這種形式.【變式訓(xùn)練3】(2021·江蘇宿遷·七年級(jí)期末)仔細(xì)閱讀下列內(nèi)容,并回答問題:用代入法解方程組有以下步驟:①由(1)得,
(3)②把(3)代入(1)得,,③整理得,④∴可取一切實(shí)數(shù),原方程組有無數(shù)個(gè)解.(1)選擇:以上解法中,造成錯(cuò)誤的一步是(
)A.①
B.②
C.③
D.④(2)用加減法解這個(gè)方程組.【答案】(1)B;(2)【解析】【分析】(1)根據(jù)變形后的方程代入方程組的另一個(gè)方程,即可得出選項(xiàng);(2)(1)-(2)得出6x=15,求出x,再把x=代入(1)求出y即可.【詳解】解:(1)以上解法中,造成錯(cuò)誤的一步是B,故答案為:B;(2),(1)-(2),得6x=15,解得:x=,代入(1),解得:y=,所以方程組的解是.【點(diǎn)睛】本題考查了解二元一次方程組,二元一次方程組的解等知識(shí)點(diǎn),能把二元一次方程組轉(zhuǎn)化成一元一次方程是解此題的關(guān)鍵.【類型四整體代換思想問題】例4.(2021·山東煙臺(tái)·七年級(jí)期中)閱讀下列材料:小明同學(xué)遇到下列問題:解方程組小明發(fā)現(xiàn)如果用代入消元法或加減消元法求解,運(yùn)算量比較大,容易出錯(cuò).如果把方程組中的(2x+3y)看成一個(gè)整體,把(2x﹣3y)看成一個(gè)整體,通過換元,可以解決問題.以下是他的解題過程:令m=2x+3y,n=2x﹣3y.原方程組化為,解的,把代入m=2x+3y,n=2x﹣3y,得解得所以,原方程組的解為.請(qǐng)你參考小明同學(xué)的做法解方程組:(1);(2).【答案】(1);(2)【解析】【分析】認(rèn)真理解題目中給定的整體代換思路,按照所給的方法求出方程組的解即可.【詳解】解:(1)令,,原方程組化為,解得:,,解得:.原方程組的解為.(2)令,,原方程組可化為:,解得:,,經(jīng)檢驗(yàn),是原方程的解.原方程組的解為.【點(diǎn)睛】本題考查了解二元一次方程組,整體代換是解題的關(guān)鍵.【變式訓(xùn)練1】(2021·湖南湘西·七年級(jí)期末)在課輔活動(dòng)中,老師布置了一道這樣的題:探究方程組:的不同解法.同學(xué)們發(fā)現(xiàn):雖然這個(gè)方程組中x,y的系數(shù)及常數(shù)項(xiàng)的數(shù)值較大,但我們也是可以用教材上學(xué)過的常規(guī)的代入消元法、加減消元法來解出來的,但老師應(yīng)該出題還有深意:此類題是不是還有更好的消元方法呢?小明帶著這個(gè)問題和同學(xué)們進(jìn)行了激烈的討論,并查找了一些課外輔導(dǎo)資料,他們發(fā)現(xiàn)采用下面的解法來消元更簡(jiǎn)單:①﹣②得2x+2y=2,所以x+y=1③.③×35﹣①得3x=﹣3.解得x=﹣1,從而y=2.所以原方程組的解是.請(qǐng)你認(rèn)真觀察方程組的特點(diǎn),也嘗試運(yùn)用小明他們發(fā)現(xiàn)的上述方法解這個(gè)方程組:.【答案】【解析】【分析】結(jié)合探究?jī)?nèi)容,仿照例子,用加減消元法解二元一次方程組.【詳解】解:②﹣①得3x+3y=3,即x+y=1③,③×2018,得:2018x+2018y=2018④,④﹣①得2x=﹣2,解得x=﹣1,將x=﹣1代入③,得:﹣1+y=1,解得y=2,∴原方程組的解為.【點(diǎn)睛】本題主要考查二元一次方程的解法,解二元一次方程組有代入法和消元法,靈活應(yīng)用這兩種方法是解題關(guān)鍵.【變式訓(xùn)練2】(2021·廣西北?!て吣昙?jí)期中)解方程組時(shí),由于,的系數(shù)及常數(shù)項(xiàng)的數(shù)值較大,如果用常規(guī)的代入消元法、加減消元法來解,不僅計(jì)算量大,而且易出現(xiàn)運(yùn)算錯(cuò)誤.而采用下面的解法則比較簡(jiǎn)單:解:①-②得,所以③.③×35-①得,解得,則.所以原方程組的解是.請(qǐng)你運(yùn)用上述方法解方程組:.【答案】【解析】【分析】仿照例子,利用加減消元法可解方程組求解.【詳解】解:,①+②得:,即③,③×1007-①得:,解得:,將代入③得:,∴原方程組的解為.【點(diǎn)睛】本題主要考查二元一次方程組的解法,解二元一次方程組由代入消元法和加減消元法.【變式訓(xùn)練3】(2021·河南洛陽·七年級(jí)期末)閱讀材料:善于思考的小軍在解方程組時(shí),采用了一種“整體代換”的解法:解:將方程②變形:4x+10y+y=5,即2(2x+5y)+y=5,③把方程①代入③,得2×3+y=5,∴y=﹣1,把y=﹣1代入①,得x=4,∴方程組的解為.請(qǐng)你根據(jù)以上方法解決下列問題:(1)模仿小軍的“整體代換”法解方程組;(2)已知x,y滿足方程組,求xy的值.【答案】(1);(2)【解析】【分析】(1)模仿小軍的解法求出方程組的解即可;(2)利用“整體代換”的思想求出xy的值即可.【詳解】解:(1),由②得:3(3x﹣2y)+2y=19③,把①代入③得:15+2y=19,解得:y=2,把y=2代入①得:3x﹣4=5,解得:x=3,則方程組的解為;(2),由①得:2(2x2+xy)﹣4xy=7③,把②代入③得:12﹣4xy=7,解得:xy=.【點(diǎn)睛】本題考查了解二元一次方程組.利用了整體思想及消元思想,消元方法有:代入消元法和加減消元法.【課后訓(xùn)練】一、解答題1.(2021·上海民辦建平遠(yuǎn)翔學(xué)校七年級(jí)期末)解方程組.【答案】【解析】【分析】先將兩個(gè)二元一次方程相加,消去y,求出x的值,再把x的值代入①求出y的值,即可求出方程組的解.【詳解】,①+②得:,解得:x=9,將代入①得:,解得:,∴方程組的解為:.【點(diǎn)睛】本題主要考查了加減消元法解二元一次方程組,將(x-5)與(y-1)看作一個(gè)整體進(jìn)行消元是解決本題的關(guān)鍵.2.(2022·北京鐵路二中七年級(jí)開學(xué)考試)解下列方程組:(1)(2)【答案】(1)(2)【解析】【分析】(1)將①代入②求出,然后將帶入①式解得,最后得方程組的解為:;(2)得,然后將帶入②式解得,最后得方程組的解為:;(1)解:(1)將①代入②得:,去括號(hào)得:,移項(xiàng)合并得:,解得:,將代入①得:,則方程組的解為;(2)(2)將得:,解得:,將代入②得:,解得:,則方程組的解為【點(diǎn)睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有兩種:代入消元法及加減消元法;觀察題目,靈活運(yùn)用這兩種方法是簡(jiǎn)便、快速解答此題的關(guān)鍵.3.(2021·新疆·博爾塔拉蒙古自治州蒙古中學(xué)七年級(jí)期中)解下列方程組(1)(2)【答案】(1)(2)【解析】【分析】(1)由于方程中未知數(shù)y的系數(shù)互為相反數(shù),故可先用加減消元法再用代入消元法進(jìn)行計(jì)算;(2)先去掉方程中的分母及括號(hào),再選擇合適的方法求方程組的解.(1)①+②得,3x=3,解得,x=1,把x=1代入①得,1+3y=4,解得,y=1,故原方程組的解為;(2)原方程組可化為,①﹣②得,﹣y=﹣2,解得,y=2,把y=2代入①得,3x﹣2×2=2,解得,x=2,故原方程組的解為.【點(diǎn)睛】本題主要考查了二元一次方程組的解法,注意:在解含分母的二元一次方程組時(shí)要先去掉分母再求解.4.(2020·山東泰安·七年級(jí)期末)解方程組:(1)(2)【答案】(1)(2)【解析】【分析】(1)利用加減消元法求解;(2)利用加減消元法求解.(1)解:得把代入①得:所以方程組的解為(2)解:得由②得③④得:代入③得:所以方程組的解為.【點(diǎn)睛】本題考查二元一次方程組解法,熟練利用加減消元,將二元一次方程轉(zhuǎn)化為一元一次方程是解題關(guān)鍵.5.(2022·廣東深圳·八年級(jí)期末)解方程組(1);(2).【答案】(1);(2).【解析】【分析】(1)用代入法解二元一次方程組即可;(2)整理后,用代入法解二元一次方程組即可.(1)解:,將①代入②,得2y-y=6,解得y=6,將y=6代入①,得x=12,∴原方程組的解為;(2)解:,由①得x=6y-3③,將③代入②得,12y-6-3y=3,解得y=1,將y=1代入③,得x=3,∴原方程組的解為.【點(diǎn)睛】本題考查了解二元一次方程組,熟練掌握代入消元法和加減消元法解二元一次方程組是解題的關(guān)鍵.6.(2022·重慶南開中學(xué)八年級(jí)開學(xué)考試)解方程組:(1)(2)【答案】(1)(2)【解析】【分析】(1)直接根據(jù)加減消元法解二元一次方程組即可;(2)將①×2+②消去,進(jìn)而求得,再將的值代入①求解即可(1)①+②得,解得將代入②得解得原方程組的解為(2)①×2+②得,解得將代入①得,解得原方程組的解為【點(diǎn)睛】本題考查了解二元一次方程組,掌握解二元一次方程組的方法是解題的關(guān)鍵.7.(2021·河南·開封市第二十七中學(xué)七年級(jí)階段練習(xí))解方程組(1)(2)【答案】(1)(2)【解析】【分析】(1)將原方程組去分母、去括號(hào)、合并同類項(xiàng),再利用加減消元法求解即可;(2)利用代入消元法求解即可.(1)解:整理,得:得:解得:,將代入,得:,解得:;故原方程的解為:;(2)由得:,將代入,得:,解得:.將代入,得:,解得:.故原方程的解為:;【點(diǎn)睛】本題考查解二元一次方程組.掌握解二元一次方程組的方法是解題關(guān)鍵.8.(2022·山東濟(jì)南·八年級(jí)期末)解二元一次方程組:(1)(2)【答案】(1)(2)【解析】【分析】(1)利用代入消元法進(jìn)行計(jì)算即可;(2)先把方程①化簡(jiǎn),然后再利用加減消元法進(jìn)行計(jì)算即可.(1)解:,由②得:x=13-4y,把x=13-4y代入①得:2(13-4y)+3y=16,解得:y=2,把y=2代入②得:x=5,∴原方程組的解為:;(2)解:將方程①化簡(jiǎn)得:4x-3y=12③,3×②-③得:x=6,把x=6代入②得:y=4,∴原方程組的解為:.【點(diǎn)睛】本題考查了解二元一次方程組,熟練掌握代入消元法和加減消元法是解題的關(guān)鍵.9.(2022·山東青島·八年級(jí)期末)解方程組:(1);(2).【答案】(1);(2).【解析】【分析】(1)應(yīng)用加減消元法,求出方程組的解是多少即可;(2)原方程組整理后,再應(yīng)用加減消元法,求出方程組的解是多少即可.(1)解:,②×2-①得-7y=-14,y=2,把y=2代入②得,x=8,∴此方程組的解為;(2)解:原方程組可化為①×4-②×3得7x=42,x=6,把x=6代入①得y=4,∴此方程組的解為.【點(diǎn)睛】本題考查了解二元一次方程組,掌握用加減法解二元一次方程組的一般步驟是解題的關(guān)鍵.10.(2020·重慶市榮昌中學(xué)校七年級(jí)階段練習(xí))解方程(1)(2)(3)(4)【答案】(1)(2)(3)(4)【解析】【分析】(1)先把①帶入②求出y的值,再把y的值帶入①即可求出x的值(2)先用加減消元法求出x的值,再用代入消元法求出y的值即可(3)先化簡(jiǎn)所求方程組為,再消去x,求出y的值,從而可解方程組的解(4)先化簡(jiǎn)所求方程組為,再消去x,求出y的值,從而可解方程組的解(1)解,把①帶入②得:4y-3y=2,解得y=2,把y=2帶入①得,x=4故原方程組的解為:.(2)解:,得,14x=-14,解得x=-1,把x=-1代入①得,-3+2y=3,解得y=3,故此方程組的解為:.(3)解:,化簡(jiǎn)可得:,③-④,得y=7,將y=7代入③,得x=5故此方程組的解為:.(4)解:,化簡(jiǎn)可得:,得:y=1,把y=1代入③得x=1故此方程組的解為:【點(diǎn)睛】本題考查了二元一次方程組,解題關(guān)鍵是代入消元法或加減消元法,將“二元”轉(zhuǎn)化為“一元”11.(2022·云南文山·八年級(jí)期末)解方程組時(shí),兩位同學(xué)的解法如下:解法一:由,得.解法二:由②得③,把①代入③得.(1)反思:上述兩種解題過程中你發(fā)現(xiàn)解法______的解題過程有錯(cuò)誤(填“一”或“二”);(2)請(qǐng)選擇一種你喜歡的方法解此方程組.【答案】(1)一(2)【解析】【分析】(1)根據(jù)兩種方法逐項(xiàng)計(jì)算,即可求解;(2)選擇方法一,利用加減法即可求解.(1)解:解法一:得,得.故方法一錯(cuò)誤;解法二:由②得③,把①代入③得.故方法二正確.故答案為:一(2)解:選擇方法一.,得,得解得,把代入①得-1-3y=8,解得y=-3,∴方程組的解為.【點(diǎn)睛】本題考查了二元一次方程組的解法,熟知加減消元法和代入消元法是解題關(guān)鍵,注意兩種消元方法的解題依據(jù)都是等式的性質(zhì).12.(2022·山西晉中·八年級(jí)期末)下面是小明同學(xué)解二元一次方程組的過程,請(qǐng)你閱讀并完成相應(yīng)的任務(wù):解方程組:解:②×2
,得2x-4y=4
③…………………第一步①+③,得5x=9…………………第二步…………………第三步把代入②,得y=…………………第四步∴原方程組的解為…………………第五步任務(wù)一:①上述材料中小明同學(xué)解二元一次方程組的數(shù)學(xué)方法是(填序號(hào)即可);A.公式法
B.換元法
C.代入法
D.加減法②上述材料中第二步和第四步的基本思想是“消元”,即把“二元”變“一元”,在此過程中體現(xiàn)的數(shù)學(xué)思想是(填序號(hào)即可);A.轉(zhuǎn)化
B.公理化
C.演繹
D.數(shù)形結(jié)合③第步開始出現(xiàn)錯(cuò)誤,這一步錯(cuò)誤的原因是;任務(wù)二:請(qǐng)你直接寫出原方程組的解.【答案】任務(wù)一:①D;②A;③一;方程②×2時(shí)漏乘了等號(hào)右邊4這一項(xiàng);任務(wù)二:原方程組的解為【解析】【分析】任務(wù)一:①根據(jù)題意可直接進(jìn)行求解;②根據(jù)題意可直接進(jìn)行求解;③根據(jù)二元一次方程的加減消元法可進(jìn)行求解;任務(wù)二:根據(jù)加減消元法可直接進(jìn)行求解方程組的解.【詳解】解:任務(wù)一:①上述材料中小明同學(xué)解二元一次方程組的數(shù)學(xué)方法是加減消元法;故選D;②上述材料中第二步和第四步的基本思想是“消元”,即把“二元”變“一元”,在此過程中體現(xiàn)的數(shù)學(xué)思想是轉(zhuǎn)化思想;故選A;③由題意得:第一步開始出現(xiàn)錯(cuò)誤,這一步錯(cuò)誤的原因?yàn)榉匠挞凇?時(shí)漏乘了等號(hào)右邊4這一項(xiàng);任務(wù)二:②×2,得:2x-4y=8③①+③,得:5x=9,解得:,把代入②得:,解得:,∴原方程組的解為.【點(diǎn)睛】本題主要考查二元一次方程組的解法,熟練掌握二元一次方程組的解法是解題的關(guān)鍵.13.(2022·江蘇·七年級(jí)專題練習(xí))下面是小穎同學(xué)解二元一次方程組的過程,請(qǐng)認(rèn)真閱讀并完成相應(yīng)的任務(wù).解方程組:.解:①,得③,第一步,②③,得,第二步,.第三步,將代入①,得.第四步,所以,原方程組的解為.第五步.填空:(1)這種求解二元一次方程組的方法叫做______.、代入消元法、加減消元法(2)第______步開始出現(xiàn)錯(cuò)誤,具體錯(cuò)誤是______;(3)直接寫出該方程組的正確解:______.【答案】(1)B(2)二;應(yīng)該等于(3)【解析】【分析】(1)②?③消去了x,得到了關(guān)于y的一元一次方程,所以這是加減消元法;(2)第二步開始出現(xiàn)錯(cuò)誤,具體錯(cuò)誤是?3y?(?4y)應(yīng)該等于y;(3)解方程組即可.(1)解:②③消去了,得到了關(guān)于的一元一次方程,故答案為:;(2)解:第二步開始出現(xiàn)錯(cuò)誤,具體錯(cuò)誤是應(yīng)該等于,故答案為:二;應(yīng)該等于;(3)解:②③得,將代入①,得:,原方程組的解為.故答案為:.【點(diǎn)睛】本題考查了二元一次方程組的解法,解二元一次方程組的基本思路是消元,把二元方程轉(zhuǎn)化為一元方程是解題的關(guān)鍵.14.(2021·山西·太原師范學(xué)院附屬中學(xué)八年級(jí)階段練習(xí))閱讀材料:在解方程組時(shí),萌萌采用了一種“整體代換”的解法.解:將方程②變形:,即③把方程①代入③得,∴,把代入①,得,∴原方程組的解為.請(qǐng)模仿萌萌的“整體代換”法解方程組【答案】.【解析】【分析】將方程②變形為2(4x-3y)-y=18,再將4x-3y=6整體代入即可求方程組.【詳解】解:中,將②變形,得:8x-6y-y=18即2(4x-3y)-y=18③,將①代入③得,2×6-y=18,∴y=-6,將y=-6代入①得,x=-3,∴方程組的解為.【點(diǎn)睛】本題考查了解二元一次方程組,熟練掌握加減消元法和代入消元法解二元一次方程組,體會(huì)整體思想解方程組的便捷是解題的關(guān)鍵.15.(2021·遼寧大連·七年級(jí)期末)閱讀下列解方程組的方法,然后解答問題:解方程組時(shí),小明發(fā)現(xiàn)如果用常規(guī)的代入消元法、加減消元法來解,計(jì)算量大,且易出現(xiàn)運(yùn)算錯(cuò)誤,他采用下面的解法則比較簡(jiǎn)單:②①得:,即.③③17得:.④①④得:,代入③得.所以這個(gè)方程組的解是.(1)請(qǐng)你運(yùn)用小明的方法解方程組.(2)猜想關(guān)于、的方程組()的解是______;(3)請(qǐng)你按照上面的規(guī)律寫一個(gè)方程組,使它的解與(2)中方程組的解相同(所寫方程組未知數(shù)的系數(shù)大于100).【答案】(1);(2);(3)(答案不唯一).【解析】【分析】(1)先用②-①得到一個(gè)新方程即然后③×1997,然后用①-④進(jìn)行求解即可得到答案;(2)根據(jù)(1)的原理進(jìn)行方程的求解即可得到答案;(3)根據(jù)(2)中計(jì)算的結(jié)果寫出一個(gè)滿足題意的方程組即可.【詳解】解:(1)②①得:,即.③③19
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《癌癥疼痛診療規(guī)范》課件
- 《孔子的簡(jiǎn)介》課件
- 人物訪談報(bào)告培訓(xùn)課件
- 單位管理制度集合大合集員工管理十篇
- 單位管理制度集粹匯編人事管理篇十篇
- 單位管理制度匯編大合集人力資源管理篇十篇
- 《神經(jīng)收集電子教案》課件
- 單位管理制度分享匯編【人力資源管理】
- 單位管理制度范例選集職員管理篇
- 單位管理制度呈現(xiàn)合集職員管理篇
- 湖南2025年湖南省生態(tài)環(huán)境廳直屬事業(yè)單位招聘44人筆試歷年參考題庫(kù)附帶答案詳解
- 福建省部分地市2023-2024學(xué)年高三上學(xué)期第一次質(zhì)量檢測(cè)(期末)生物 含解析
- (新版):中國(guó)卒中學(xué)會(huì)急性缺血性卒中再灌注治療指南
- 人工智能在體育訓(xùn)練中的應(yīng)用
- 2024-2030年中國(guó)液態(tài)金屬行業(yè)市場(chǎng)分析報(bào)告
- 高二上學(xué)期數(shù)學(xué)北師大版(2019)期末模擬測(cè)試卷A卷(含解析)
- 2024-2025學(xué)年上學(xué)期深圳初中語文七年級(jí)期末模擬卷3
- 2024-2025學(xué)年上學(xué)期廣州初中地理八年級(jí)期末模擬卷2
- 中考語文真題專題復(fù)習(xí) 小說閱讀(第01期)(解析版)
- 2025版國(guó)家開放大學(xué)法律事務(wù)專科《法律咨詢與調(diào)解》期末紙質(zhì)考試單項(xiàng)選擇題題庫(kù)
- GB 45067-2024特種設(shè)備重大事故隱患判定準(zhǔn)則
評(píng)論
0/150
提交評(píng)論