版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省哈爾濱松北區(qū)四校聯(lián)考2023-2024學年中考數(shù)學押題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在下列函數(shù)中,其圖象與x軸沒有交點的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=2.四根長度分別為3,4,6,x(x為正整數(shù))的木棒,從中任取三根.首尾順次相接都能組成一個三角形,則().A.組成的三角形中周長最小為9 B.組成的三角形中周長最小為10C.組成的三角形中周長最大為19 D.組成的三角形中周長最大為163.某校舉行“漢字聽寫比賽”,5個班級代表隊的正確答題數(shù)如圖.這5個正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,154.如圖,AB∥CD,點E在CA的延長線上.若∠BAE=40°,則∠ACD的大小為()A.150° B.140° C.130° D.120°5.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個進出口,小明要從這里乘坐地鐵去新鄭機場,回來后仍從這里出站,則他恰好選擇從同一個口進出的概率是()A. B. C. D.6.如圖是小強用八塊相同的小正方體搭建的一個積木,它的左視圖是()A. B. C. D.7.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠38.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點是BD的中點,若AD=6,則CP的長為()A.3.5 B.3 C.4 D.4.59.如圖,將木條a,b與c釘在一起,∠1=70°,∠2=50°,要使木條a與b平行,木條a旋轉(zhuǎn)的度數(shù)至少是()A.10° B.20° C.50° D.70°10.在快速計算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運算就改用手勢了.如計算8×9時,左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數(shù)的和為7,未伸出手指數(shù)的積為2,則8×9=10×7+2=1.那么在計算6×7時,左、右手伸出的手指數(shù)應該分別為()A.1,2 B.1,3C.4,2 D.4,311.如圖所示,在長方形紙片ABCD中,AB=32cm,把長方形紙片沿AC折疊,點B落在點E處,AE交DC于點F,AF=25cm,則AD的長為()A.16cm B.20cm C.24cm D.28cm12.若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則一次函數(shù)的圖象可能是:A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.函數(shù)的圖象不經(jīng)過第__________象限.14.﹣的絕對值是_____.15.如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為__________.16.如圖,已知正八邊形ABCDEFGH內(nèi)部△ABE的面積為6cm1,則正八邊形ABCDEFGH面積為_____cm1.17.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長度為_____18.若不等式組的解集為,則________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y=(x>0)的圖象經(jīng)過AO的中點C,交AB于點D,且AD=1.設(shè)點A的坐標為(4,4)則點C的坐標為;若點D的坐標為(4,n).①求反比例函數(shù)y=的表達式;②求經(jīng)過C,D兩點的直線所對應的函數(shù)解析式;在(2)的條件下,設(shè)點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.20.(6分)小麗和哥哥小明分別從家和圖書館同時出發(fā),沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發(fā)的時間x(min)之間的函數(shù)圖象如圖所示:(1)求兩人相遇時小明離家的距離;(2)求小麗離距離圖書館500m時所用的時間.21.(6分)已知,拋物線L:y=x2+bx+c與x軸交于點A和點B(-3,0),與y軸交于點C(0,3).(1)求拋物線L的頂點坐標和A點坐標.(2)如何平移拋物線L得到拋物線L1,使得平移后的拋物線L1的頂點與拋物線L的頂點關(guān)于原點對稱?(3)將拋物線L平移,使其經(jīng)過點C得到拋物線L2,點P(m,n)(m>0)是拋物線L2上的一點,是否存在點P,使得△PAC為等腰直角三角形,若存在,請直接寫出拋物線L2的表達式,若不存在,請說明理由.22.(8分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:頻數(shù)分布表中a=,b=,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?23.(8分)觀察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉(zhuǎn)90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是,位置關(guān)系是.探究證明:在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.拓展延伸:如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.24.(10分)在第23個世界讀書日前夕,我市某中學為了解本校學生的每周課外閱讀時間用t表示,單位:小時,采用隨機抽樣的方法進行問卷調(diào)查,調(diào)查結(jié)果按,,,分為四個等級,并依次用A,B,C,D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計的數(shù)據(jù),繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:求本次調(diào)查的學生人數(shù);求扇形統(tǒng)計圖中等級B所在扇形的圓心角度數(shù),并把條形統(tǒng)計圖補充完整;若該校共有學生1200人,試估計每周課外閱讀時間滿足的人數(shù).25.(10分)如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)求證:△AEF是等腰直角三角形;(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,連接AE,求證:AF=AE;(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.26.(12分)先化簡(-a+1)÷,并從0,-1,2中選一個合適的數(shù)作為a的值代入求值.27.(12分)觀察下列各個等式的規(guī)律:第一個等式:=1,第二個等式:=2,第三個等式:=3…請用上述等式反映出的規(guī)律解決下列問題:直接寫出第四個等式;猜想第n個等式(用n的代數(shù)式表示),并證明你猜想的等式是正確的.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
依據(jù)一次函數(shù)的圖象,二次函數(shù)的圖象以及反比例函數(shù)的圖象進行判斷即可.【詳解】A.正比例函數(shù)y=2x與x軸交于(0,0),不合題意;B.一次函數(shù)y=-3x+1與x軸交于(,0),不合題意;C.二次函數(shù)y=x2與x軸交于(0,0),不合題意;D.反比例函數(shù)y=與x軸沒有交點,符合題意;故選D.2、D【解析】
首先寫出所有的組合情況,再進一步根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個三角形,可得3<x<7,即x=4或5或1.①當三邊為3、4、1時,其周長為3+4+1=13;②當x=4時,周長最小為3+4+4=11,周長最大為4+1+4=14;③當x=5時,周長最小為3+4+5=12,周長最大為4+1+5=15;④若x=1時,周長最小為3+4+1=13,周長最大為4+1+1=11;綜上所述,三角形周長最小為11,最大為11,故選:D.【點睛】本題考查的是三角形三邊關(guān)系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關(guān)鍵.3、D【解析】
將五個答題數(shù),從小打到排列,5個數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個答題數(shù)排序為:10,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.4、B【解析】試題分析:如圖,延長DC到F,則∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故選B.考點:1.平行線的性質(zhì);2.平角性質(zhì).5、C【解析】
列表得出進出的所有情況,再從中確定出恰好選擇從同一個口進出的結(jié)果數(shù),繼而根據(jù)概率公式計算可得.【詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個口進出的有5種情況,∴恰好選擇從同一個口進出的概率為=,故選C.【點睛】此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、D【解析】
左視圖從左往右,2列正方形的個數(shù)依次為2,1,依此得出圖形D正確.故選D.【詳解】請在此輸入詳解!7、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.8、B【解析】
解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點是BD的中點,∴CP=BD=1.故選B.9、B【解析】
要使木條a與b平行,那么∠1=∠2,從而可求出木條a至少旋轉(zhuǎn)的度數(shù).【詳解】解:∵要使木條a與b平行,∴∠1=∠2,∴當∠1需變?yōu)?0o,∴木條a至少旋轉(zhuǎn):70o-50o=20o.故選B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)及平行線的性質(zhì):①兩直線平行同位角相等;②兩直線平行內(nèi)錯角相等;③兩直線平行同旁內(nèi)角互補;④夾在兩平行線間的平行線段相等.在運用平行線的性質(zhì)定理時,一定要找準同位角,內(nèi)錯角和同旁內(nèi)角.10、A【解析】試題分析:通過猜想得出數(shù)據(jù),再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點評:此題是定義新運算題型.通過閱讀規(guī)則,得出一般結(jié)論.解題關(guān)鍵是對號入座不要找錯對應關(guān)系.11、C【解析】
首先根據(jù)平行線的性質(zhì)以及折疊的性質(zhì)證明∠EAC=∠DCA,根據(jù)等角對等邊證明FC=AF,則DF即可求得,然后在直角△ADF中利用勾股定理求解.【詳解】∵長方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵長方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故選C.【點睛】本題考查了折疊的性質(zhì)以及勾股定理,在折疊的過程中注意到相等的角以及相等的線段是關(guān)鍵.12、B【解析】
由方程有兩個不相等的實數(shù)根,可得,解得,即異號,當時,一次函數(shù)的圖象過一三四象限,當時,一次函數(shù)的圖象過一二四象限,故答案選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、三.【解析】
先根據(jù)一次函數(shù)判斷出函數(shù)圖象經(jīng)過的象限,進而可得出結(jié)論.【詳解】解:∵一次函數(shù)中,此函數(shù)的圖象經(jīng)過一、二、四象限,不經(jīng)過第三象限,故答案為:三.【點睛】本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)中,當,時,函數(shù)圖象經(jīng)過一、二、四象限.14、【解析】
絕對值是指一個數(shù)在數(shù)軸上所對應點到原點的距離,用“|
|”來表示.|b-a|或|a-b|表示數(shù)軸上表示a的點和表示b的點的距離.【詳解】﹣的絕對值是|﹣|=【點睛】本題考查的是絕對值,熟練掌握絕對值的定義是解題的關(guān)鍵.15、4.1【解析】解:如圖所示:∵四邊形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根據(jù)題意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,設(shè)AP=EP=x,則PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根據(jù)勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案為4.1.16、14【解析】
取AE中點I,連接IB,則正八邊形ABCDEFGH是由8個與△IDE全等的三角形構(gòu)成.【詳解】解:取AE中點I,連接IB.則正八邊形ABCDEFGH是由8個與△IAB全等的三角形構(gòu)成.∵I是AE的中點,∴S△IAB=12S則圓內(nèi)接正八邊形ABCDEFGH的面積為:8×3=14cm1.
故答案為14.【點睛】本題考查正多邊形的性質(zhì),解答此題的關(guān)鍵是作出輔助線構(gòu)造出三角形.17、【解析】
分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點睛】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì)18、-1【解析】分析:解出不等式組的解集,與已知解集-1<x<1比較,可以求出a、b的值,然后相加求出2009次方,可得最終答案.詳解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案為-1.點睛:本題是已知不等式組的解集,求不等式中另一未知數(shù)的問題.可以先將另一未知數(shù)當作已知處理,求出解集與已知解集比較,進而求得零一個未知數(shù).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)C(2,2);(2)①反比例函數(shù)解析式為y=;②直線CD的解析式為y=﹣x+1;(1)m=1時,S△OEF最大,最大值為.【解析】
(1)利用中點坐標公式即可得出結(jié)論;
(2)①先確定出點A坐標,進而得出點C坐標,將點C,D坐標代入反比例函數(shù)中即可得出結(jié)論;
②由n=1,求出點C,D坐標,利用待定系數(shù)法即可得出結(jié)論;
(1)設(shè)出點E坐標,進而表示出點F坐標,即可建立面積與m的函數(shù)關(guān)系式即可得出結(jié)論.【詳解】(1)∵點C是OA的中點,A(4,4),O(0,0),∴C,∴C(2,2);故答案為(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵點C是OA的中點,∴C(2,),∵點C,D(4,n)在雙曲線上,∴,∴,∴反比例函數(shù)解析式為;②由①知,n=1,∴C(2,2),D(4,1),設(shè)直線CD的解析式為y=ax+b,∴,∴,∴直線CD的解析式為y=﹣x+1;(1)如圖,由(2)知,直線CD的解析式為y=﹣x+1,設(shè)點E(m,﹣m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y軸交雙曲線于F,∴F(m,),∴EF=﹣m+1﹣,∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,∵2<m<4,∴m=1時,S△OEF最大,最大值為【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,線段的中點坐標公式,解本題的關(guān)鍵是建立S△OEF與m的函數(shù)關(guān)系式.20、(1)兩人相遇時小明離家的距離為1500米;(2)小麗離距離圖書館500m時所用的時間為分.【解析】
(1)根據(jù)題意得出小明的速度,進而得出得出小明離家的距離;(2)由(1)的結(jié)論得出小麗步行的速度,再列方程解答即可.【詳解】解:(1)根據(jù)題意可得小明的速度為:4500÷(10+5)=300(米/分),300×5=1500(米),∴兩人相遇時小明離家的距離為1500米;(2)小麗步行的速度為:(4500﹣1500)÷(35﹣10)=120(米/分),設(shè)小麗離距離圖書館500m時所用的時間為x分,根據(jù)題意得,1500+120(x﹣10)=4500﹣500,解得x=.答:小麗離距離圖書館500m時所用的時間為分.【點睛】本題由函數(shù)圖像獲取信息,以及一元一次方程的應用,由函數(shù)圖像正確獲取信息是解答本題的關(guān)鍵.21、(1)頂點(-2,-1)A(-1,0);(2)y=(x-2)2+1;(3)y=x2-x+3,,y=x2-4x+3,.【解析】
(1)將點B和點C代入求出拋物線L即可求解.(2)將拋物線L化頂點式求出頂點再根據(jù)關(guān)于原點對稱求出即可求解.(3)將使得△PAC為等腰直角三角形,作出所有點P的可能性,求出代入即可求解.【詳解】(1)將點B(-3,0),C(0,3)代入拋物線得:,解得,則拋物線.拋物線與x軸交于點A,,,A(-1,0),拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1).(2)拋物線L化頂點式可得,由此可得頂點坐標頂點(-2,-1)拋物線L1的頂點與拋物線L的頂點關(guān)于原點對稱,對稱頂點坐標為(2,1),即將拋物線向右移4個單位,向上移2個單位.(3)使得△PAC為等腰直角三角形,作出所有點P的可能性.是等腰直角三角形,,,,,求得.,同理得,,,由題意知拋物線并將點代入得:.【點睛】本題主要考查拋物線綜合題,討論出P點的所有可能性是解題關(guān)鍵.22、(1)a=0.3,b=4;(2)99人;(3)【解析】分析:(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.詳解:(1)a=1-0.15-0.35-0.20=0.3;∵總?cè)藬?shù)為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為:0.3,4;補全統(tǒng)計圖得:(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結(jié)果,所選兩人正好都是甲班學生的有3種情況,∴所選兩人正好都是甲班學生的概率是:.點睛:此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)CE=BD,CE⊥BD.(2)(1)中的結(jié)論仍然成立.理由見解析;(3).【解析】分析:(1)線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)證明的方法與(1)類似.(3)過A作AM⊥BC于M,EN⊥AM于N,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,則NE=MA,由于∠ACB=45°,則AM=MC,所以MC=NE,易得四邊形MCEN為矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,設(shè)DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函數(shù)即可求得CF的最大值.詳解:(1)①∵AB=AC,∠BAC=90°,∴線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案為CE=BD,CE⊥BD.(2)(1)中的結(jié)論仍然成立.理由如下:如圖,∵線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系分別為:CE=BD,CE⊥BD.(3)如圖3,過A作AM⊥BC于M,EN⊥AM于N,∵線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC為等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四邊形MCEN為平行四邊形,∵∠AMC=90°,∴四邊形MCEN為矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴,設(shè)DC=x,∵∠ACB=45°,AC=,∴AM=CM=1,MD=1-x,∴,∴CF=-x2+x=-(x-)2+,∴當x=時有最大值,CF最大值為.點睛:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個圖形全等,對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應點到旋轉(zhuǎn)中心的距離相等.也考查了等腰直角三角形的性質(zhì)和三角形全等及相似的判定與性質(zhì).24、本次調(diào)查的學生人數(shù)為200人;B所在扇形的圓心角為,補全條形圖見解析;全校每周課外閱讀時間滿足的約有360人.【解析】【分析】根據(jù)等級A的人數(shù)及所占百分比即可得出調(diào)查學生人數(shù);先計算出C在扇形圖中的百分比,用在扇形圖中的百分比可計算出B在扇形圖中的百分比,再計算出B在扇形的圓心角;總?cè)藬?shù)課外閱讀時間滿足的百分比即得所求.【詳解】由條形圖知,A級的人數(shù)為20人,由扇形圖知:A級人數(shù)占總調(diào)查人數(shù)的,所以:人,即本次調(diào)查的學生人數(shù)為200人;由條形圖知:C級的人數(shù)為60人,所以C級所占的百分比為:,B級所占的百分比為:,B級的人數(shù)為人,D級的人數(shù)為:人,B所在扇形的圓心角為:,補全條形圖如圖所示:;因為C級所占的百分比為,所以全校每周課外閱讀時間滿足的人數(shù)為:人,答:全校每周課外閱讀時間滿足的約有360人.【點睛】本題考查了扇形圖和條形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度范例選集【人事管理篇】十篇
- 單位管理制度呈現(xiàn)大合集【人力資源管理】十篇
- 《行政職業(yè)能力測驗》2024年公務員考試陜西省渭南市高分沖刺試卷含解析
- 2024年公務員培訓總結(jié)
- 教育科技行業(yè)話務員工作總結(jié)
- 碩士研究之路
- 電子通信行業(yè)顧問工作總結(jié)
- 2024年員工三級安全培訓考試題【培優(yōu)B卷】
- 2023年-2024年項目部安全培訓考試題答案研優(yōu)卷
- 2024年安全教育培訓試題附參考答案(典型題)
- 新(完整)小學三年級語文教學案例
- ZZ007 現(xiàn)代加工技術(shù)賽項正式賽題及評分標準完整版包括所有附件-2023年全國職業(yè)院校技能大賽賽項正式賽卷
- 麥肯錫:企業(yè)發(fā)展戰(zhàn)略規(guī)劃制定及實施流程教學課件
- 新課標人教版五年級數(shù)學上冊總復習(全冊)
- 電氣接線工藝培訓
- 土木工程管理與工程造價的有效控制探析獲獎科研報告
- 基層版創(chuàng)傷中心建設(shè)指南(試行)
- 全過程造價咨詢服務實施方案
- 插圖幻燈片制作PPT3D小人圖標幻燈素材(精)
- 室內(nèi)設(shè)計裝飾材料案例分析課件
- 四年級上冊道德與法治第10課《我們所了解的環(huán)境污染》教學反思(部編人教版)
評論
0/150
提交評論