2024年中考數(shù)學(xué)壓軸題型(廣東專用)專題09 二次函數(shù)中最值、變換、新定義型問題(含解析)_第1頁
2024年中考數(shù)學(xué)壓軸題型(廣東專用)專題09 二次函數(shù)中最值、變換、新定義型問題(含解析)_第2頁
2024年中考數(shù)學(xué)壓軸題型(廣東專用)專題09 二次函數(shù)中最值、變換、新定義型問題(含解析)_第3頁
2024年中考數(shù)學(xué)壓軸題型(廣東專用)專題09 二次函數(shù)中最值、變換、新定義型問題(含解析)_第4頁
2024年中考數(shù)學(xué)壓軸題型(廣東專用)專題09 二次函數(shù)中最值、變換、新定義型問題(含解析)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

PAGE專題09二次函數(shù)中最值、變換、新定義型問題通用的解題思路:第一步:先判定函數(shù)的增減性:一次函數(shù)、反比例函數(shù)看SKIPIF1<0,二次函數(shù)看對(duì)稱軸與區(qū)間的位置關(guān)系;第二步:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0.二次函數(shù)求取值范圍之動(dòng)軸定區(qū)間或者定軸動(dòng)區(qū)間的分類方法:分對(duì)稱軸在區(qū)間的左邊、右邊、中間三種情況。若自變量SKIPIF1<0的取值范圍為全體實(shí)數(shù),如圖①,函數(shù)在頂點(diǎn)處SKIPIF1<0時(shí),取到最值.若SKIPIF1<0,如圖②,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若SKIPIF1<0,如圖③,當(dāng)SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,如圖④,當(dāng)SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0.1.(2023·廣東·中考真題)如圖,拋物線SKIPIF1<0經(jīng)過正方形SKIPIF1<0的三個(gè)頂點(diǎn)A,B,C,點(diǎn)B在SKIPIF1<0軸上,則SKIPIF1<0的值為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】連接SKIPIF1<0,交y軸于點(diǎn)D,根據(jù)正方形的性質(zhì)可知SKIPIF1<0,然后可得點(diǎn)SKIPIF1<0,進(jìn)而代入求解即可.【詳解】解:連接SKIPIF1<0,交y軸于點(diǎn)D,如圖所示:

當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,即SKIPIF1<0,∵四邊形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0,∴點(diǎn)SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,故選B.【點(diǎn)睛】本題主要考查二次函數(shù)的圖象與性質(zhì)及正方形的性質(zhì),熟練掌握二次函數(shù)的圖象與性質(zhì)及正方形的性質(zhì)是解題的關(guān)鍵.2.(2022·廣東廣州·中考真題)如圖,拋物線SKIPIF1<0的對(duì)稱軸為SKIPIF1<0,下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0隨SKIPIF1<0的增大而減小 D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0隨SKIPIF1<0的增大而減小【答案】C【分析】由圖像可知,拋物線開口向上,因此a>0.由圖像與y軸的交點(diǎn)在y軸負(fù)半軸上得c<0.根據(jù)圖像可知,在對(duì)稱軸左側(cè)y隨x的增大而減小,在對(duì)稱軸右側(cè)y隨x的增大而增大.【詳解】拋物線開口向上,因此a>0,故A選項(xiàng)不符合題意.拋物線與y軸的交點(diǎn)在y軸的負(fù)半軸上,因此c<0,故B選項(xiàng)不符合題意.拋物線開口向上,因此在對(duì)稱軸左側(cè),y隨x的增大而減小,故C選項(xiàng)符合題意.拋物線開口向上,因此在對(duì)稱軸右側(cè)y隨x的增大而增大,故D選項(xiàng)不符合題意.故選C【點(diǎn)睛】本題考查了二次函數(shù)圖像的性質(zhì),掌握二次函數(shù)圖像的性質(zhì)是解題的關(guān)鍵.3.(2022·廣東·中考真題)如圖,拋物線SKIPIF1<0(b,c是常數(shù))的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),SKIPIF1<0,SKIPIF1<0,點(diǎn)P為線段SKIPIF1<0上的動(dòng)點(diǎn),過P作SKIPIF1<0//SKIPIF1<0交SKIPIF1<0于點(diǎn)Q.(1)求該拋物線的解析式;(2)求SKIPIF1<0面積的最大值,并求此時(shí)P點(diǎn)坐標(biāo).【答案】(1)SKIPIF1<0(2)2;P(-1,0)【分析】(1)用待定系數(shù)法將A,B的坐標(biāo)代入函數(shù)一般式中,即可求出函數(shù)的解析式;(2)分別求出C點(diǎn)坐標(biāo),直線AC,BC的解析式,PQ的解析式為:y=-2x+n,進(jìn)而求出P,Q的坐標(biāo)以及n的取值范圍,由SKIPIF1<0列出函數(shù)式求解即可.【詳解】(1)解:∵點(diǎn)A(1,0),AB=4,∴點(diǎn)B的坐標(biāo)為(-3,0),將點(diǎn)A(1,0),B(-3,0)代入函數(shù)解析式中得:SKIPIF1<0,解得:b=2,c=-3,∴拋物線的解析式為SKIPIF1<0;(2)解:由(1)得拋物線的解析式為SKIPIF1<0,頂點(diǎn)式為:SKIPIF1<0,則C點(diǎn)坐標(biāo)為:(-1,-4),由B(-3,0),C(-1,-4)可求直線BC的解析式為:y=-2x-6,由A(1,0),C(-1,-4)可求直線AC的解析式為:y=2x-2,∵PQ∥BC,設(shè)直線PQ的解析式為:y=-2x+n,與x軸交點(diǎn)PSKIPIF1<0,由SKIPIF1<0解得:SKIPIF1<0,∵P在線段AB上,∴SKIPIF1<0,∴n的取值范圍為-6<n<2,則SKIPIF1<0SKIPIF1<0SKIPIF1<0∴當(dāng)n=-2時(shí),即P(-1,0)時(shí),SKIPIF1<0最大,最大值為2.【點(diǎn)睛】本題考查二次函數(shù)的面積最值問題,二次函數(shù)的圖象與解析式間的關(guān)系,一次函數(shù)的解析式與圖象,熟練掌握數(shù)形結(jié)合思想是解決本題的關(guān)鍵.4.(2022·廣東廣州·中考真題)已知直線SKIPIF1<0:SKIPIF1<0經(jīng)過點(diǎn)(0,7)和點(diǎn)(1,6).(1)求直線SKIPIF1<0的解析式;(2)若點(diǎn)P(SKIPIF1<0,SKIPIF1<0)在直線SKIPIF1<0上,以P為頂點(diǎn)的拋物線G過點(diǎn)(0,-3),且開口向下①求SKIPIF1<0的取值范圍;②設(shè)拋物線G與直線SKIPIF1<0的另一個(gè)交點(diǎn)為Q,當(dāng)點(diǎn)Q向左平移1個(gè)單長度后得到的點(diǎn)Q'也在G上時(shí),求G在SKIPIF1<0≤SKIPIF1<0≤SKIPIF1<0的圖象的最高點(diǎn)的坐標(biāo).【答案】(1)直線SKIPIF1<0解析式為:SKIPIF1<0;(2)①m<10,且m≠0;②最高點(diǎn)的坐標(biāo)為(-2,9)或(2,5)【分析】(1)根據(jù)待定系數(shù)法求出解析式即可;(2)①設(shè)G的頂點(diǎn)式,根據(jù)點(diǎn)P在直線SKIPIF1<0上得出G的關(guān)系式,根據(jù)題意得出點(diǎn)(0,-3)不能成為拋物線G的頂點(diǎn),進(jìn)而得出點(diǎn)P必須位于直線SKIPIF1<0的上方,可求m的取值范圍,然后結(jié)合點(diǎn)P不能在SKIPIF1<0軸上得出答案;②先根據(jù)點(diǎn)Q,點(diǎn)SKIPIF1<0的對(duì)稱,得QQ'=1,可表示點(diǎn)Q和SKIPIF1<0的坐標(biāo),再將點(diǎn)SKIPIF1<0的坐標(biāo)的代入關(guān)系式,求出a,再將點(diǎn)(0,-3)代入可求出m的值,然后分兩種情況結(jié)合取值范圍,求出函數(shù)最大值時(shí),最高點(diǎn)的坐標(biāo)即可.【詳解】(1)解:∵直線SKIPIF1<0經(jīng)過點(diǎn)(0,7)和點(diǎn)(1,6),∴SKIPIF1<0,解得SKIPIF1<0,∴直線SKIPIF1<0解析式為:SKIPIF1<0;(2)解:①設(shè)G:SKIPIF1<0(SKIPIF1<0),∵點(diǎn)P(SKIPIF1<0,SKIPIF1<0)在直線SKIPIF1<0上,∴SKIPIF1<0;∴G:SKIPIF1<0(SKIPIF1<0)∵(0,-3)不在直線SKIPIF1<0上,∴(0,-3)不能成為拋物線G的頂點(diǎn),而以P為頂點(diǎn)的拋物線G開口向下,且經(jīng)過(0,-3),∴點(diǎn)P必須位于直線SKIPIF1<0的上方,則SKIPIF1<0,SKIPIF1<0,另一方面,點(diǎn)P不能在SKIPIF1<0軸上,∴SKIPIF1<0,∴所求SKIPIF1<0取值范圍為:SKIPIF1<0,且SKIPIF1<0;②如圖,QQ'關(guān)于直線SKIPIF1<0對(duì)稱,且QQ'=1,∴點(diǎn)Q橫坐標(biāo)為SKIPIF1<0,而點(diǎn)Q在SKIPIF1<0上,∴Q(SKIPIF1<0,SKIPIF1<0),Q'(SKIPIF1<0,SKIPIF1<0);∵Q'(SKIPIF1<0,SKIPIF1<0)在G:SKIPIF1<0上,∴SKIPIF1<0,SKIPIF1<0,∴G:SKIPIF1<0,或SKIPIF1<0.∵拋物線G過點(diǎn)(0,-3),∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),拋物線G為SKIPIF1<0,對(duì)稱軸為直線SKIPIF1<0,對(duì)應(yīng)區(qū)間為-2≤SKIPIF1<0≤-1,整個(gè)區(qū)間在對(duì)稱軸SKIPIF1<0的右側(cè),此時(shí),函數(shù)值SKIPIF1<0隨著SKIPIF1<0的增大而減小,如圖,∴當(dāng)SKIPIF1<0取區(qū)間左端點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0達(dá)最大值9,最高點(diǎn)坐標(biāo)為(-2,9);當(dāng)SKIPIF1<0時(shí),對(duì)應(yīng)區(qū)間為SKIPIF1<0≤SKIPIF1<0≤SKIPIF1<0,最高點(diǎn)為頂點(diǎn)P(2,5),如圖,∴G在指定區(qū)間圖象最高點(diǎn)的坐標(biāo)為(-2,9)或(2,5).【點(diǎn)睛】本題考查了二次函數(shù)的綜合問題,考查了待定系數(shù)法求二次函數(shù)的關(guān)系式,求二次函數(shù)的極值等.解題的關(guān)鍵是掌握當(dāng)SKIPIF1<0時(shí),頂點(diǎn)在直線SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)(0,7),此時(shí)拋物線不可能過點(diǎn)(0,-3),因此,SKIPIF1<0可能會(huì)被忽視.題型一二次函數(shù)圖象與系數(shù)a,b,c的關(guān)系1.已知二次函數(shù)SKIPIF1<0圖象的一部分如圖所示,該函數(shù)圖象經(jīng)過點(diǎn)SKIPIF1<0,對(duì)稱軸為直線SKIPIF1<0.對(duì)于下列結(jié)論:SKIPIF1<0;②SKIPIF1<0;③多項(xiàng)式SKIPIF1<0可因式分解為SKIPIF1<0;④無論m為何值時(shí),SKIPIF1<0.其中正確個(gè)數(shù)有(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)【答案】B【分析】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象的性質(zhì)等等:先根據(jù)圖像的開口方向和對(duì)稱軸可判斷①;由拋物線的對(duì)稱軸為SKIPIF1<0可得拋物線與x軸的另一個(gè)交點(diǎn)為SKIPIF1<0,由此可判斷②;根據(jù)拋物線與x軸的兩個(gè)交點(diǎn)坐標(biāo)可判斷③;根據(jù)函數(shù)的對(duì)稱軸為SKIPIF1<0可知SKIPIF1<0時(shí)y有最大值,由此可判斷④.【詳解】解:∵拋物線開口向下,∴SKIPIF1<0,∵對(duì)稱軸為直線SKIPIF1<0,∴SKIPIF1<0,結(jié)論①正確;∵拋物線與x軸的一個(gè)交點(diǎn)為SKIPIF1<0,且對(duì)稱軸為直線SKIPIF1<0,∴拋物線與x軸的另一個(gè)交點(diǎn)為SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,結(jié)論②錯(cuò)誤;∵拋物線SKIPIF1<0與x軸的兩個(gè)交點(diǎn)為SKIPIF1<0,SKIPIF1<0,∴多項(xiàng)式SKIPIF1<0可因式分解為SKIPIF1<0,結(jié)論③錯(cuò)誤;∵對(duì)稱軸為直線SKIPIF1<0,且函數(shù)開口向下,∴當(dāng)SKIPIF1<0時(shí),y有最大值,由SKIPIF1<0得,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴無論m為何值時(shí),SKIPIF1<0,∴SKIPIF1<0,結(jié)論④正確;綜上:正確的有①④.故選:B.2.如圖是二次函數(shù)SKIPIF1<0的圖象,對(duì)稱軸是直線SKIPIF1<0.關(guān)于下列結(jié)論:①SKIPIF1<0;②SKIPIF1<0,③SKIPIF1<0;④SKIPIF1<0;⑤方程SKIPIF1<0兩個(gè)根為SKIPIF1<0,SKIPIF1<0,其中正確的結(jié)論有(

)A.①③④ B.②④⑤ C.①②⑤ D.②③⑤【答案】B【分析】本題考查了二次函數(shù)圖像與性質(zhì),由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.根據(jù)二次函數(shù)圖像判定代數(shù)式的正負(fù)和數(shù)形結(jié)合思想是解題的關(guān)鍵.【詳解】解:由圖象可得:拋物線開口向下,∴SKIPIF1<0,對(duì)稱軸在y軸左側(cè),根據(jù)左同右異,∴SKIPIF1<0,∴SKIPIF1<0,故①錯(cuò);由圖象可得:拋物線與x軸有兩個(gè)交點(diǎn),∴SKIPIF1<0,故②正確;由圖象可得:SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,故③錯(cuò);由圖象可得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故④正確;由圖象可得:SKIPIF1<0的兩根分別為SKIPIF1<0,SKIPIF1<0,∴方程SKIPIF1<0兩個(gè)根為SKIPIF1<0,SKIPIF1<0,故⑤正確;故選:B.3.拋物線SKIPIF1<0上部分點(diǎn)的橫坐標(biāo)x和縱坐標(biāo)y的對(duì)應(yīng)值如下表,下列說法正確的有(

).x…SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<001…y…SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<033…①當(dāng)SKIPIF1<0時(shí),y隨x的增大而減?。虎趻佄锞€的對(duì)稱軸為直線SKIPIF1<0;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;

④方程SKIPIF1<0的一個(gè)正數(shù)解SKIPIF1<0滿足SKIPIF1<0.A.①② B.①②③ C.②③④ D.①②④【答案】D【分析】本題主要考查了二次函數(shù)圖像的性質(zhì)和二次函數(shù)圖像上點(diǎn)的特征,理解二次函數(shù)圖像的性質(zhì)是解題的關(guān)鍵.根據(jù)表格信息,先確定出拋物線的對(duì)稱軸,然后根據(jù)二次函數(shù)的性質(zhì)逐項(xiàng)判斷即可.【詳解】解:①由表格看出,這個(gè)拋物線的對(duì)稱軸為直線SKIPIF1<0且當(dāng)SKIPIF1<0時(shí),y隨x的增大而增大,根據(jù)二次函數(shù)圖像的對(duì)稱性可得當(dāng)SKIPIF1<0時(shí),y隨x的增大而減小,故①的說法正確;②由表格看出,這個(gè)拋物線的對(duì)稱軸為直線SKIPIF1<0,故②的說法正確;③當(dāng)SKIPIF1<0時(shí)的函數(shù)值與SKIPIF1<0時(shí)的函數(shù)值相同為SKIPIF1<0,即,故③的說法錯(cuò)誤;④當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,根據(jù)二次函數(shù)的對(duì)稱性可得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故方程SKIPIF1<0的正數(shù)解滿足SKIPIF1<0,故④的說法正確.故選:D.題型二二次函數(shù)中線段最小值1.如題,在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.(1)求拋物線的解析式.(2)點(diǎn)SKIPIF1<0為拋物線的對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)SKIPIF1<0周長最小時(shí),求點(diǎn)SKIPIF1<0的坐標(biāo).(3)點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),射線SKIPIF1<0交拋物線于點(diǎn)SKIPIF1<0,SKIPIF1<0是拋物線上一動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作SKIPIF1<0軸的平行線,交射線SKIPIF1<0與點(diǎn)SKIPIF1<0,是否存在點(diǎn)SKIPIF1<0使得SKIPIF1<0與SKIPIF1<0相似?若存在,求出點(diǎn)SKIPIF1<0的坐標(biāo);若不存在,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)存在,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0【分析】(1)待定系數(shù)法求解析式即可求解;(2)點(diǎn)SKIPIF1<0關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)SKIPIF1<0,連接SKIPIF1<0交對(duì)稱軸于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,此時(shí)SKIPIF1<0最小,得出直線SKIPIF1<0的解析式為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得出SKIPIF1<0即可求解;(3)分兩種情況:SKIPIF1<0,SKIPIF1<0,根據(jù)相似三角形的性質(zhì),即可求解.【詳解】(1)解:把點(diǎn)SKIPIF1<0,SKIPIF1<0分別代入SKIPIF1<0,得SKIPIF1<0解得SKIPIF1<0∴拋物線的解析式為SKIPIF1<0.(2)∵SKIPIF1<0,SKIPIF1<0∴對(duì)稱軸為直線SKIPIF1<0點(diǎn)SKIPIF1<0關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)SKIPIF1<0,連接SKIPIF1<0交對(duì)稱軸于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,此時(shí)SKIPIF1<0最小,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴點(diǎn)SKIPIF1<0.設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0∴SKIPIF1<0∴直線SKIPIF1<0的解析式為SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴點(diǎn)SKIPIF1<0.(3)存在.∵SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0SKIPIF1<0.又SKIPIF1<0,∴直線SKIPIF1<0的解析式為SKIPIF1<0,SKIPIF1<0.聯(lián)立SKIPIF1<0得SKIPIF1<0.解得SKIPIF1<0,SKIPIF1<0(舍).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.∴SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.∴SKIPIF1<0.分以下兩種情況:①如圖2,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0軸.∴SKIPIF1<0.∴SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0(舍).∴SKIPIF1<0.②如圖3,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.過點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0(舍).∴SKIPIF1<0.綜上,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)的綜合運(yùn)用,待定系數(shù)法求二次函數(shù)解析式,線段周長問題以及相似三角形的性質(zhì),解題的關(guān)鍵是求出二次函數(shù)解析式.2.如圖1,在平面直角坐標(biāo)系中,直線SKIPIF1<0與拋物線SKIPIF1<0(b,c是常數(shù))交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在y軸上.設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)C.

(1)求該拋物線的解析式;(2)若點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)SKIPIF1<0的值最小時(shí),求點(diǎn)M的坐標(biāo);(3)P是拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),如圖2,若點(diǎn)P在直線SKIPIF1<0上方,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)D,求SKIPIF1<0的最大值;【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)直線SKIPIF1<0與兩坐標(biāo)的交點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0,將A、B代入拋物線SKIPIF1<0,利用待定系數(shù)法即可求解;(2)根據(jù)拋物線解析式確定與x軸的交點(diǎn)坐標(biāo),再由對(duì)稱的性質(zhì)及兩點(diǎn)之間線段最短即可確定點(diǎn)M的位置,然后代入一次函數(shù)解析式求解即可;(3)過點(diǎn)P作SKIPIF1<0交直線SKIPIF1<0于點(diǎn)E,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0取最大值時(shí),SKIPIF1<0有最大值.【詳解】(1)解:SKIPIF1<0直線SKIPIF1<0與坐標(biāo)軸交于A、B兩點(diǎn),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將A、B代入拋物線SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0拋物線的解析式為:SKIPIF1<0.(2)∵拋物線的解析式為:SKIPIF1<0.∴當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0,∴SKIPIF1<0,∴拋物線的對(duì)稱軸為SKIPIF1<0,

∵點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,連接SKIPIF1<0交對(duì)稱軸于點(diǎn)M,∴SKIPIF1<0,此時(shí)SKIPIF1<0取得最小值,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0;(3)過點(diǎn)P作SKIPIF1<0交直線SKIPIF1<0于點(diǎn)E,則SKIPIF1<0,

SKIPIF1<0設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0代數(shù)式SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)有最大值,SKIPIF1<0的最大值為SKIPIF1<0.【點(diǎn)睛】本題是二次函數(shù)與一次函數(shù)的交點(diǎn)問題,考查了用待定系數(shù)法求二次函數(shù)的解析式,三角形相似的判定和性質(zhì),解題的關(guān)鍵是構(gòu)造輔助線證SKIPIF1<0.3.在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交于SKIPIF1<0、SKIPIF1<0兩點(diǎn)SKIPIF1<0點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0的左側(cè)SKIPIF1<0,其中SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求拋物線的解析式;(2)線段SKIPIF1<0上有一動(dòng)點(diǎn)SKIPIF1<0,連接SKIPIF1<0,當(dāng)SKIPIF1<0SKIPIF1<0SKIPIF1<0的值最小時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)SKIPIF1<0的坐標(biāo)和SKIPIF1<0SKIPIF1<0SKIPIF1<0的最小值.(3)如圖2,點(diǎn)SKIPIF1<0為直線SKIPIF1<0上方拋物線上一點(diǎn),連接SKIPIF1<0、SKIPIF1<0交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,記SKIPIF1<0的面積為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,求SKIPIF1<0的最大值.【答案】(1)拋物線的解析式為:SKIPIF1<0(2)SKIPIF1<0,CSKIPIF1<0SKIPIF1<0SKIPIF1<0的最小值為SKIPIF1<0(3)最大值為SKIPIF1<0【分析】(1)根據(jù)點(diǎn)SKIPIF1<0的坐標(biāo)和SKIPIF1<0的值可得出點(diǎn)SKIPIF1<0的坐標(biāo),將點(diǎn)SKIPIF1<0,SKIPIF1<0的坐標(biāo)代入拋物線,組成方程組,解之即可得出結(jié)論;(2)令SKIPIF1<0,可得點(diǎn)SKIPIF1<0的坐標(biāo),由此可得SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)即為所求點(diǎn)SKIPIF1<0,再根據(jù)直角三角形的三邊關(guān)系可得出結(jié)論;(3)過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸交SKIPIF1<0的延長線于點(diǎn)SKIPIF1<0,由此可得SKIPIF1<0,則SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的坐標(biāo),表達(dá)SKIPIF1<0的長,再根據(jù)二次函數(shù)的性質(zhì)可得結(jié)論.【詳解】(1)解:∵SKIPIF1<0

∴SKIPIF1<0∵SKIPIF1<0

∴SKIPIF1<0,SKIPIF1<0將SKIPIF1<0、SKIPIF1<0的坐標(biāo)代入SKIPIF1<0得:SKIPIF1<0

∴SKIPIF1<0∴拋物線的解析式為:SKIPIF1<0;(2)解:由SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)即為所求點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0的最小值為SKIPIF1<0;(3)如圖,過SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0軸交SKIPIF1<0延長線于SKIPIF1<0,設(shè)直線SKIPIF1<0解析式為:SKIPIF1<0,由(1)得:SKIPIF1<0,將SKIPIF1<0,SKIPIF1<0分別代入SKIPIF1<0得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的表達(dá)式為:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故SKIPIF1<0的橫坐標(biāo)SKIPIF1<0,代入SKIPIF1<0,得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0軸于點(diǎn)SKIPIF1<0,SKIPIF1<0軸,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,將SKIPIF1<0、SKIPIF1<0分別看作SKIPIF1<0、SKIPIF1<0為底邊,則它們的高相同,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0有最大值,最大值為SKIPIF1<0【點(diǎn)睛】本題主要考查了二次函數(shù)綜合,待定系數(shù)法,解直角三角形,相似三角形的性質(zhì)與判定問題,解本題的關(guān)鍵是設(shè)出點(diǎn)SKIPIF1<0的橫坐標(biāo),并正確表達(dá)面積的比值.題型三二次函數(shù)中面積最值問題1.如圖,拋物線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線上.(1)求拋物線的解析式;(2)如圖1,點(diǎn)D在第一象限內(nèi)的拋物線上,連接SKIPIF1<0,SKIPIF1<0,請(qǐng)求出SKIPIF1<0面積的最大值;(3)點(diǎn)SKIPIF1<0在拋物線上移動(dòng),連接SKIPIF1<0,存在SKIPIF1<0,請(qǐng)直接寫出點(diǎn)SKIPIF1<0的坐標(biāo).【答案】(1)SKIPIF1<0(2)4(3)點(diǎn)SKIPIF1<0的坐標(biāo)為:SKIPIF1<0或SKIPIF1<0.【分析】(1)由待定系數(shù)法即可求解;(2)由SKIPIF1<0面積SKIPIF1<0,即可求解;(3)當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0軸上方時(shí),則點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0關(guān)于拋物線對(duì)稱軸對(duì)稱,即可求解;當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0軸下方時(shí),由SKIPIF1<0,求出點(diǎn)SKIPIF1<0,即可求解.【詳解】(1)解:拋物線的表達(dá)式為:SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,則拋物線的表達(dá)式為:SKIPIF1<0①;(2)解:過點(diǎn)SKIPIF1<0作SKIPIF1<0軸交SKIPIF1<0于點(diǎn)SKIPIF1<0,由點(diǎn)SKIPIF1<0、SKIPIF1<0的坐標(biāo)得,直線SKIPIF1<0的表達(dá)式為:SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0,則SKIPIF1<0面積SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0面積有最大值,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0面積的最大值為4;(3)解:當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0軸上方時(shí),SKIPIF1<0所以SKIPIF1<0平行于x軸則點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0關(guān)于拋物線對(duì)稱軸對(duì)稱,則點(diǎn)SKIPIF1<0;當(dāng)點(diǎn)SKIPIF1<0在SKIPIF1<0軸下方時(shí),設(shè)SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,即點(diǎn)SKIPIF1<0,由點(diǎn)SKIPIF1<0、SKIPIF1<0的坐標(biāo)得,直線SKIPIF1<0的表達(dá)式為:SKIPIF1<0②,聯(lián)立①②得:SKIPIF1<0,解得:SKIPIF1<0(舍去)或SKIPIF1<0,即點(diǎn)SKIPIF1<0的坐標(biāo)為:SKIPIF1<0;綜上,點(diǎn)SKIPIF1<0的坐標(biāo)為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到等腰三角形的性質(zhì)、面積的計(jì)算等,分類求解是解題的關(guān)鍵.2.如圖,在直角坐標(biāo)系中有一直角三角形SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0,將此三角形繞原點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0,得到SKIPIF1<0,拋物線SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0.(1)求拋物線的解析式;(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,①是否存在一點(diǎn)P,使SKIPIF1<0的面積最大?若存在,求出SKIPIF1<0的面積的最大值;若不存在,請(qǐng)說明理由.②設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,直接寫出當(dāng)SKIPIF1<0與SKIPIF1<0相似時(shí),點(diǎn)P的坐標(biāo).【答案】(1)SKIPIF1<0(2)①存在,最大值為SKIPIF1<0,理由見解析;②SKIPIF1<0或SKIPIF1<0【分析】(1)根據(jù)正切函數(shù),可得SKIPIF1<0,根據(jù)旋轉(zhuǎn)的性質(zhì)可得SKIPIF1<0,據(jù)此求出A、B、C的坐標(biāo),再利用待定系數(shù)法即可求出函數(shù)解析式;(2)①可求得直線SKIPIF1<0的解析式,過SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,可用SKIPIF1<0表示出SKIPIF1<0的長,當(dāng)SKIPIF1<0取最大值時(shí),則SKIPIF1<0的面積最大,可求得其最大值;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于SKIPIF1<0點(diǎn),證明SKIPIF1<0,得到SKIPIF1<0,進(jìn)而推出SKIPIF1<0,則SKIPIF1<0,解方程即可;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí),SKIPIF1<0軸,則SKIPIF1<0.【詳解】(1)解:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是由SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0而得到的,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入解析式得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0拋物線的解析式為SKIPIF1<0;(2)解:SKIPIF1<0存在點(diǎn)SKIPIF1<0使SKIPIF1<0的面積最大,SKIPIF1<0的面積有最大值為SKIPIF1<0理由如下:設(shè)直線SKIPIF1<0解析式為SKIPIF1<0,把SKIPIF1<0、SKIPIF1<0兩點(diǎn)坐標(biāo)代入可得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0解析式為SKIPIF1<0,如圖SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0軸,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0點(diǎn)橫坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)在第二象限,SKIPIF1<0點(diǎn)在SKIPIF1<0點(diǎn)上方,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值,最大值為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0有最大值時(shí),SKIPIF1<0的面積有最大值,SKIPIF1<0,綜上可知,存在點(diǎn)SKIPIF1<0使SKIPIF1<0的面積最大,SKIPIF1<0的面積有最大值為SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于SKIPIF1<0點(diǎn),∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在第二象限,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,與SKIPIF1<0在二象限,橫坐標(biāo)小于SKIPIF1<0矛盾,舍去,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí),SKIPIF1<0軸,SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0與SKIPIF1<0相似時(shí),SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)綜合題,相似三角形的性質(zhì)與判定,一次函數(shù)與幾何綜合,解直角三角形,旋轉(zhuǎn)的性質(zhì)等等,解(1)的關(guān)鍵是利用旋轉(zhuǎn)的性質(zhì)得出SKIPIF1<0,SKIPIF1<0的長,又利用了待定系數(shù)法;解(2)的關(guān)鍵是利用相似三角形的性質(zhì)得出SKIPIF1<0.3.如圖,在平面直角坐標(biāo)系中,已知拋物線SKIPIF1<0與直線SKIPIF1<0相交于A,B兩點(diǎn),其中SKIPIF1<0.(1)求該拋物線的函數(shù)解析式;(2)點(diǎn)P為直線SKIPIF1<0下方拋物線上的任意一點(diǎn),連接SKIPIF1<0,求SKIPIF1<0面積的最大值;(3)若點(diǎn)M為拋物線對(duì)稱軸上的點(diǎn),拋物線上是否存在點(diǎn)N,使得以A、B、M、N為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)N的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】(1)用待定系數(shù)法可得拋物線的函數(shù)解析式為SKIPIF1<0;(2)過P作SKIPIF1<0軸交SKIPIF1<0于Q,求出直線SKIPIF1<0解析式為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0可得SKIPIF1<0,故SKIPIF1<0,根據(jù)二次函數(shù)性質(zhì)可得SKIPIF1<0面積的最大值為SKIPIF1<0;(3)求出拋物線的對(duì)稱軸為直線SKIPIF1<0,設(shè)SKIPIF1<0,分三種情況:①當(dāng)SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0的中點(diǎn)重合,SKIPIF1<0,②當(dāng)SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0,③當(dāng)SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0,分別解方程組可得答案.【詳解】(1)解:把SKIPIF1<0代入SKIPIF1<0得:SKIPIF1<0,解得SKIPIF1<0,∴拋物線的函數(shù)解析式為SKIPIF1<0;(2)解:過P作SKIPIF1<0軸交SKIPIF1<0于Q,如圖:由SKIPIF1<0得直線SKIPIF1<0解析式為SKIPIF1<0,設(shè)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最大值SKIPIF1<0,SKIPIF1<0面積的最大值為SKIPIF1<0;(3)解:拋物線上存在點(diǎn)N,使得以A、B、M、N為頂點(diǎn)的四邊形是平行四邊形,理由如下:SKIPIF1<0,∴拋物線SKIPIF1<0的對(duì)稱軸為直線SKIPIF1<0,設(shè)SKIPIF1<0,又SKIPIF1<0,①當(dāng)SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0的中點(diǎn)重合,∴SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;②當(dāng)SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;③當(dāng)SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;綜上所述,N的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法,三角形面積,平行四邊形等知識(shí),解題的關(guān)鍵是分類討論思想和方程思想的應(yīng)用.題型四二次函數(shù)平移、翻折、旋轉(zhuǎn)問題1.如圖1,拋物線SKIPIF1<0與SKIPIF1<0軸相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),與SK

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論