版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
文獻信息:文獻標題:AStudyofDataMiningwithBigData(大數(shù)據(jù)挖掘研究)國外作者:VHShastri,VSreeprada文獻出處:《InternationalJournalofEmergingTrendsandTechnologyinComputerScience》,2016,38(2):99-103字數(shù)統(tǒng)計:英文2291單詞,12196字符;中文3868漢字外文文獻:AStudyofDataMiningwithBigDataAbstractDatahasbecomeanimportantpartofeveryeconomy,industry,organization,business,functionandindividual.BigDataisatermusedtoidentifylargedatasetstypicallywhosesizeislargerthanthetypicaldatabase.Bigdataintroducesuniquecomputationalandstatisticalchallenges.BigDataareatpresentexpandinginmostofthedomainsofengineeringandscience.Datamininghelpstoextractusefuldatafromthehugedatasetsduetoitsvolume,variabilityandvelocity.ThisarticlepresentsaHACEtheoremthatcharacterizesthefeaturesoftheBigDatarevolution,andproposesaBigDataprocessingmodel,fromthedataminingperspective.Keywords:BigData,DataMining,HACEtheorem,structuredandunstructured.I.IntroductionBigDatareferstoenormousamountofstructureddataandunstructureddatathatoverflowtheorganization.Ifthisdataisproperlyused,itcanleadtomeaningfulinformation.Bigdataincludesalargenumberofdatawhichrequiresalotofprocessinginrealtime.Itprovidesaroomtodiscovernewvalues,tounderstandin-depthknowledgefromhiddenvaluesandprovideaspacetomanagethedataeffectively.Adatabaseisanorganizedcollectionoflogicallyrelateddatawhichcanbeeasilymanaged,updatedandaccessed.Dataminingisaprocessdiscoveringinterestingknowledgesuchasassociations,patterns,changes,anomaliesandsignificantstructuresfromlargeamountofdatastoredinthedatabasesorotherrepositories.BigDataincludes3V’sasitscharacteristics.Theyarevolume,velocityandvariety.Volumemeanstheamountofdatageneratedeverysecond.Thedataisinstateofrest.Itisalsoknownforitsscalecharacteristics.Velocityisthespeedwithwhichthedataisgenerated.Itshouldhavehighspeeddata.Thedatageneratedfromsocialmediaisanexample.Varietymeansdifferenttypesofdatacanbetakensuchasaudio,videoordocuments.Itcanbenumerals,images,timeseries,arraysetc.DataMininganalysesthedatafromdifferentperspectivesandsummarizingitintousefulinformationthatcanbeusedforbusinesssolutionsandpredictingthefuturetrends.Datamining(DM),alsocalledKnowledgeDiscoveryinDatabases(KDD)orKnowledgeDiscoveryandDataMining,istheprocessofsearchinglargevolumesofdataautomaticallyforpatternssuchasassociationrules.Itappliesmanycomputationaltechniquesfromstatistics,informationretrieval,machinelearningandpatternrecognition.Dataminingextractonlyrequiredpatternsfromthedatabaseinashorttimespan.Basedonthetypeofpatternstobemined,dataminingtaskscanbeclassifiedintosummarization,classification,clustering,associationandtrendsanalysis.BigDataisexpandinginalldomainsincludingscienceandengineeringfieldsincludingphysical,biologicalandbiomedicalsciences.II.BIGDATAwithDATAMININGGenerallybigdatareferstoacollectionoflargevolumesofdataandthesedataaregeneratedfromvarioussourceslikeinternet,social-media,businessorganization,sensorsetc.WecanextractsomeusefulinformationwiththehelpofDataMining.Itisatechniquefordiscoveringpatternsaswellasdescriptive,understandable,modelsfromalargescaleofdata.Volumeisthesizeofthedatawhichislargerthanpetabytesandterabytes.Thescaleandriseofsizemakesitdifficulttostoreandanalyseusingtraditionaltools.BigDatashouldbeusedtominelargeamountsofdatawithinthepredefinedperiodoftime.Traditionaldatabasesystemsweredesignedtoaddresssmallamountsofdatawhichwerestructuredandconsistent,whereasBigDataincludeswidevarietyofdatasuchasgeospatialdata,audio,video,unstructuredtextandsoon.BigDataminingreferstotheactivityofgoingthroughbigdatasetstolookforrelevantinformation.Toprocesslargevolumesofdatafromdifferentsourcesquickly,Hadoopisused.Hadoopisafree,Java-basedprogrammingframeworkthatsupportstheprocessingoflargedatasetsinadistributedcomputingenvironment.Itsdistributedfilesystemsupportsfastdatatransferratesamongnodesandallowsthesystemtocontinueoperatinguninterruptedattimesofnodefailure.ItrunsMapReducefordistributeddataprocessingandisworkswithstructuredandunstructureddata.III.BIGDATAcharacteristics-HACETHEOREM.Wehavelargevolumeofheterogeneousdata.Thereexistsacomplexrelationshipamongthedata.Weneedtodiscoverusefulinformationfromthisvoluminousdata.Letusimagineascenarioinwhichtheblindpeopleareaskedtodrawelephant.Theinformationcollectedbyeachblindpeoplemaythinkthetrunkaswall,legastree,bodyaswallandtailasrope.Theblindmencanexchangeinformationwitheachother.Figure1:BlindmenandthegiantelephantSomeofthecharacteristicsthatincludeare:i.Vastdatawithheterogeneousanddiversesources:Oneofthefundamentalcharacteristicsofbigdataisthelargevolumeofdatarepresentedbyheterogeneousanddiversedimensions.Forexampleinthebiomedicalworld,asinglehumanbeingisrepresentedasname,age,gender,familyhistoryetc.,ForX-rayandCTscanimagesandvideosareused.Heterogeneityreferstothedifferenttypesofrepresentationsofsameindividualanddiversereferstothevarietyoffeaturestorepresentsingleinformation.ii.Autonomouswithdistributedandde-centralizedcontrol:thesourcesareautonomous,i.e.,automaticallygenerated;itgeneratesinformationwithoutanycentralizedcontrol.WecancompareitwithWorldWideWeb(WWW)whereeachserverprovidesacertainamountofinformationwithoutdependingonotherservers.iii.Complexandevolvingrelationships:Asthesizeofthedatabecomesinfinitelylarge,therelationshipthatexistsisalsolarge.Inearlystages,whendataissmall,thereisnocomplexityinrelationshipsamongthedata.Datageneratedfromsocialmediaandothersourceshavecomplexrelationships.IV.TOOLS: OPENSOURCEREVOLUTIONLargecompaniessuchasFacebook,Yahoo,Twitter,LinkedInbenefitandcontributeworkonopensourceprojects.InBigDataMining,therearemanyopensourceinitiatives.Themostpopularofthemare:ApacheMahout:ScalablemachinelearninganddataminingopensourcesoftwarebasedmainlyinHadoop.Ithasimplementationsofawiderangeofmachinelearninganddataminingalgorithms:clustering,classification,collaborativefilteringandfrequentpatternmining.R:opensourceprogramminglanguageandsoftwareenvironmentdesignedforstatisticalcomputingandvisualization.RwasdesignedbyRossIhakaandRobertGentlemanattheUniversityofAuckland,NewZealandbeginningin1993andisusedforstatisticalanalysisofverylargedatasets.MOA:Streamdataminingopensourcesoftwaretoperformdatamininginrealtime.Ithasimplementationsofclassification,regression;clusteringandfrequentitemsetminingandfrequentgraphmining.ItstartedasaprojectoftheMachineLearninggroupofUniversityofWaikato,NewZealand,famousfortheWEKAsoftware.ThestreamsframeworkprovidesanenvironmentfordefiningandrunningstreamprocessesusingsimpleXMLbaseddefinitionsandisabletouseMOA,AndroidandStorm.SAMOA:ItisanewupcomingsoftwareprojectfordistributedstreamminingthatwillcombineS4andStormwithMOA.VowpalWabbit:opensourceprojectstartedatYahoo!ResearchandcontinuingatMicrosoftResearchtodesignafast,scalable,usefullearningalgorithm.VWisabletolearnfromterafeaturedatasets.Itcanexceedthethroughputofanysinglemachinenetworkinterfacewhendoinglinearlearning,viaparallellearning.V.DATAMININGforBIGDATADataminingistheprocessbywhichdataisanalysedcomingfromdifferentsourcesdiscoversusefulinformation.DataMiningcontainsseveralalgorithmswhichfallinto4categories.Theyare:1.AssociationRule2.Clustering3.Classification4.RegressionAssociationisusedtosearchrelationshipbetweenvariables.Itisappliedinsearchingforfrequentlyvisiteditems.Inshortitestablishesrelationshipamongobjects.Clusteringdiscoversgroupsandstructuresinthedata.Classificationdealswithassociatinganunknownstructuretoaknownstructure.Regressionfindsafunctiontomodelthedata.Thedifferentdataminingalgorithmsare:CategoryAlgorithmAssociationApriori,FPgrowthClusteringK-Means,Expectation.ClassificationDecisiontrees,SVMRegressionMultivariatelinearregressionTable1.ClassificationofAlgorithmsDataMiningalgorithmscanbeconvertedintobigmapreducealgorithmbasedonparallelcomputingbasis.BigDataDataMiningItiseverythingintheworldnow.ItistheoldBigData.Sizeofthedataislarger.Sizeofthedataissmaller.Involvesstorageandprocessingoflargedatasets.Interestingpatternscanbefound.BigDataisthetermforlargedataset.Dataminingreferstotheactivityofgoingthroughbigdatasettolookforrelevantinformation.Bigdataistheasset.Dataminingisthehandlerwhichprovidebeneficialresult.Bigdata"variesdependingonthecapabilitiesoftheorganizationmanagingtheset,andonthecapabilitiesoftheapplicationsthataretraditionallyusedtoprocessandanalysethedata.Dataminingreferstotheoperationthatinvolverelativelysophisticatedsearchoperation.Table2.DifferencesbetweenDataMiningandBigDataVI.ChallengesinBIGDATAMeetingthechallengeswithBIGDataisdifficult.Thevolumeisincreasingeveryday.Thevelocityisincreasingbytheinternetconnecteddevices.Thevarietyisalsoexpandingandtheorganizations’capabilitytocaptureandprocessthedataislimited.ThefollowingarethechallengesinareaofBigDatawhenitishandled:1.Datacaptureandstorage2.Datatransmission3.Datacuration4.Dataanalysis5.DatavisualizationAccordingto,challengesofbigdataminingaredividedinto3tiers.Thefirsttieristhesetupofdataminingalgorithms.Thesecondtierincludes1.InformationsharingandDataPrivacy.2.DomainandApplicationKnowledge.Thethirdoneincludeslocallearningandmodelfusionformultipleinformationsources.3.Miningfromsparse,uncertainandincompletedata.4.Miningcomplexanddynamicdata.Figure2:PhasesofBigDataChallengesGenerallyminingofdatafromdifferentdatasourcesistediousassizeofdataislarger.Bigdataisstoredatdifferentplacesandcollectingthosedatawillbeatedioustaskandapplyingbasicdataminingalgorithmswillbeanobstacleforit.Nextweneedtoconsidertheprivacyofdata.Thethirdcaseisminingalgorithms.Whenweareapplyingdataminingalgorithmstothesesubsetsofdatatheresultmaynotbethatmuchaccurate.VII.ForecastofthefutureTherearesomechallengesthatresearchersandpractitionerswillhavetodealduringthenextyears:AnalyticsArchitecture:Itisnotclearyethowanoptimalarchitectureofanalyticssystemsshouldbetodealwithhistoricdataandwithreal-timedataatthesametime.AninterestingproposalistheLambdaarchitectureofNathanMarz.TheLambdaArchitecturesolvestheproblemofcomputingarbitraryfunctionsonarbitrarydatainrealtimebydecomposingtheproblemintothreelayers:thebatchlayer,theservinglayer,andthespeedlayer.ItcombinesinthesamesystemHadoopforthebatchlayer,andStormforthespeedlayer.Thepropertiesofthesystemare:robustandfaulttolerant,scalable,general,andextensible,allowsadhocqueries,minimalmaintenance,anddebuggable.Statisticalsignificance:Itisimportanttoachievesignificantstatisticalresults,andnotbefooledbyrandomness.AsEfronexplainsinhisbookaboutLargeScaleInference,itiseasytogowrongwithhugedatasetsandthousandsofquestionstoansweratonce.Distributedmining:Manydataminingtechniquesarenottrivialtoparalyze.Tohavedistributedversionsofsomemethods,alotofresearchisneededwithpracticalandtheoreticalanalysistoprovidenewmethods.Timeevolvingdata:Datamaybeevolvingovertime,soitisimportantthattheBigDataminingtechniquesshouldbeabletoadaptandinsomecasestodetectchangefirst.Forexample,thedatastreamminingfieldhasverypowerfultechniquesforthistask.Compression:DealingwithBigData,thequantityofspaceneededtostoreitisveryrelevant.Therearetwomainapproaches:compressionwherewedon’tlooseanything,orsamplingwherewechoosewhatisthedatathatismorerepresentative.Usingcompression,wemaytakemoretimeandlessspace,sowecanconsideritasatransformationfromtimetospace.Usingsampling,weareloosinginformation,butthegainsinspacemaybeinordersofmagnitude.ForexampleFeldmanetalusecoresetstoreducethecomplexityofBigDataproblems.Coresetsaresmallsetsthatprovablyapproximatetheoriginaldataforagivenproblem.Usingmerge-reducethesmallsetscanthenbeusedforsolvinghardmachinelearningproblemsinparallel.Visualization:AmaintaskofBigDataanalysisishowtovisualizetheresults.Asthedataissobig,itisverydifficulttofinduser-friendlyvisualizations.Newtechniques,andframeworkstotellandshowstorieswillbeneeded,asforexamplethephotographs,infographicsandessaysinthebeautifulbook”TheHumanFaceofBigData”.HiddenBigData:Largequantitiesofusefuldataaregettinglostsincenewdataislargelyuntaggedfilebasedandunstructureddata.The2012IDCstudyonBigDataexplainsthatin2012,23%(643exabytes)ofthedigitaluniversewouldbeusefulforBigDataiftaggedandanalyzed.However,currentlyonly3%ofthepotentiallyusefuldataistagged,andevenlessisanalyzed.VIII.CONCLUSIONTheamountsofdataisgrowingexponentiallyduetosocialnetworkingsites,searchandretrievalengines,mediasharingsites,stocktradingsites,newssourcesandsoon.BigDataisbecomingthenewareaforscientificdataresearchandforbusinessapplications.Dataminingtechniquescanbeappliedonbigdatatoacquiresomeusefulinformationfromlargedatasets.Theycanbeusedtogethertoacquiresomeusefulpicturefromthedata.BigDataanalysistoolslikeMapReduceoverHadoopandHDFShelpsorganization.中文譯文:大數(shù)據(jù)挖掘研究摘要數(shù)據(jù)已經(jīng)成為各個經(jīng)濟、行業(yè)、組織、企業(yè)、職能和個人的重要組成部分。大數(shù)據(jù)是用于識別大型數(shù)據(jù)集的一個術語,通常其大小比典型的數(shù)據(jù)庫要大。大數(shù)據(jù)引入了獨特的計算和統(tǒng)計挑戰(zhàn)。在工程和科學的大部分領域,大數(shù)據(jù)目前都有延伸。由于大數(shù)據(jù)的數(shù)量之多、速度之快、種類之繁,所以可以使用數(shù)據(jù)挖掘,有助于從龐大的數(shù)據(jù)集中提取有用的數(shù)據(jù)。本文介紹了HACE定理,它描述了大數(shù)據(jù)革命的特征,并從數(shù)據(jù)挖掘角度提出了一個大數(shù)據(jù)處理模型。關鍵詞:大數(shù)據(jù),數(shù)據(jù)挖掘,HACE定理,結構化和非結構化。一、簡介大數(shù)據(jù)指的是大量的結構化數(shù)據(jù)和非結構化數(shù)據(jù),這些數(shù)據(jù)遍布了整個組織。如果這些數(shù)據(jù)被正確使用,將會產(chǎn)生有意義的信息。大數(shù)據(jù)包括大量的數(shù)據(jù),需要大量的實時處理。它提供了兩個空間,一個用于發(fā)現(xiàn)新價值,并從隱藏的價值中了解深入的知識,另一個用于有效管理數(shù)據(jù)。數(shù)據(jù)庫是一個與數(shù)據(jù)相關的邏輯上有組織的集合,可以方便地管理、更新和訪問。數(shù)據(jù)挖掘是從數(shù)據(jù)庫或其他存儲庫中存儲的大量數(shù)據(jù)中發(fā)現(xiàn)有趣的知識(如關聯(lián)、模式、更改、異常和重要結構)的過程。大數(shù)據(jù)包括3V的特征。它們是大量(volume)、高速(velocity)和多樣(variety)。大量意味著每秒生成的數(shù)據(jù)量。數(shù)據(jù)是靜態(tài)的,它的規(guī)模特征也是眾所周知的。高速是數(shù)據(jù)生成的速度。大數(shù)據(jù)應該有高速數(shù)據(jù),社交媒體產(chǎn)生的數(shù)據(jù)就是一個例子。多樣意味著可以采取不同類型的數(shù)據(jù),例如音頻、視頻或文檔。它可以是數(shù)字、圖像、時間序列、數(shù)組等。數(shù)據(jù)挖掘從不同的角度分析數(shù)據(jù),并將其匯總為有用的信息,可用于商業(yè)解決方案和預測未來趨勢。數(shù)據(jù)挖掘(DM)也稱為數(shù)據(jù)庫中的知識發(fā)現(xiàn)(KDD),或者知識發(fā)現(xiàn)和數(shù)據(jù)挖掘,是為關聯(lián)規(guī)則等模式自動搜索大量數(shù)據(jù)的過程。它應用了統(tǒng)計學、信息檢索、機器學習和模式識別等方面的許多計算技術。數(shù)據(jù)挖掘僅在短時間內(nèi)從數(shù)據(jù)庫中提取所需的模式。根據(jù)要挖掘的模式類型,可以將數(shù)據(jù)挖掘任務分為匯總、分類、聚類、關聯(lián)和趨勢分析。在包括物理、生物和生物醫(yī)學等科學和工程領域在內(nèi)的所有領域,大數(shù)據(jù)都有延伸。二、大數(shù)據(jù)挖掘一般而言,大數(shù)據(jù)是指大量數(shù)據(jù)的集合,這些數(shù)據(jù)來自互聯(lián)網(wǎng)、社交媒體、商業(yè)組織、傳感器等各種來源。我們可以借助數(shù)據(jù)挖掘技術來提取一些有用的信息。這是一種從大量數(shù)據(jù)中發(fā)現(xiàn)模式以及描述性、可理解的模型的技術。容量是數(shù)據(jù)的大小,大于PB和TB。規(guī)模和容量的增加使得傳統(tǒng)的工具難以存儲和分析。在預定的時間段內(nèi),應該使用大數(shù)據(jù)挖掘大量數(shù)據(jù)。傳統(tǒng)的數(shù)據(jù)庫系統(tǒng)旨在解決少量的結構化和一致性的數(shù)據(jù),而大數(shù)據(jù)包括各種數(shù)據(jù),如地理空間數(shù)據(jù)、音頻、視頻、非結構化文本等。大數(shù)據(jù)挖掘是指通過大數(shù)據(jù)集來查找相關信息的活動。為了快速處理不同來源的大量數(shù)據(jù),使用了Hadoop。Hadoop是一個免費的基于Java的編程框架,支持在分布式計算環(huán)境中處理大型數(shù)據(jù)集。其分布式文件系統(tǒng)支持節(jié)點之間的快速數(shù)據(jù)傳輸速率,并允許系統(tǒng)在發(fā)生節(jié)點故障時不中斷運行。它為分布式數(shù)據(jù)處理進行MapReduce,用于結構化和非結構化數(shù)據(jù)。三、大數(shù)據(jù)特征——HACE定理我們有大量的異構數(shù)據(jù)。數(shù)據(jù)之間存在復雜的關系。我們需要從這些龐大的數(shù)據(jù)中發(fā)現(xiàn)有用的信息。讓我們想象一下,一個盲人被要求畫大象的場景。每個盲人收集到的信息可能會認為軀干像墻,腿像樹,身體像墻,尾巴像繩子。盲人們可以相互交換信息。圖1:盲人和大象其中的一些特征包括:1.具有異構及不同來源的海量數(shù)據(jù):大數(shù)據(jù)的基本特征之一是大量的異構數(shù)據(jù)和多樣數(shù)據(jù)。例如,在生物醫(yī)學世界中,個人用姓名、年齡、性別、家族病史等來表示,用于X射線和CT掃描圖像和視頻。異構是指同一個體的不同表現(xiàn)形式,多樣是指用各種特征來表示單一信息。2.具有分布式和非集中式控制的自治:來源是自治的,即自動生成;它在沒有任何集中控制的情況下生成信息。我們可以將它與萬維網(wǎng)(WWW)進行比較,其中每臺服務器都提供一定數(shù)量的信息,而不依賴于其他服務器。3.復雜且不斷演化的關系:隨著數(shù)據(jù)量變得無限大,存在的關系也很大。在早期階段,當數(shù)據(jù)很小時,數(shù)據(jù)之間的關系并不復雜。社交媒體和其他來源生成的數(shù)據(jù)具有復雜的關系。四.工具:開放源碼革命Facebook、雅虎、Twitter、LinkedIn等大公司受益于開源項目,并為之做出貢獻。在大數(shù)據(jù)挖掘中,有許多開源計劃。其中最受歡迎的是:ApacheMahout:主要基于Hadoop的可擴展機器學習和數(shù)據(jù)挖掘的開源軟件。它實現(xiàn)了廣泛的機器學習和數(shù)據(jù)挖掘算法:聚類、分類、協(xié)同過濾和頻繁模式。R:為統(tǒng)計計算和可視化設計的開源編程語言和軟件環(huán)境。R是由在新西蘭奧克蘭大學的RossIhaka和RobertGentleman在1993年開始設計的,用于統(tǒng)計分析超大型數(shù)據(jù)集。MOA:流數(shù)據(jù)挖掘開源軟件,可以實時進行數(shù)據(jù)挖掘。它具有分類、回歸、聚類和頻繁項集挖掘和頻繁圖挖掘等實現(xiàn)。它始于新西蘭懷卡托大學機器學習小組的一個項目,以WEKA軟件著稱。流框架為使用簡單的根據(jù)XML來定義和運行流過程提供了一個環(huán)境,并能夠使用MOA、Android和StormSAMOA:這是一個新的即將推出的分布式流挖掘軟件項目,它將S4和Storm與MOA結合在一起。VowpalWabbit:在雅虎啟動的開源項目。研究并繼續(xù)在微軟研究院設計一個快速的、可擴展的、有用的學習算法。VW能夠從大量特征數(shù)據(jù)集中學習。在進行線性學習、通過并行學習時,它可以超過任何單機網(wǎng)絡接口的吞吐量。五、大數(shù)據(jù)的數(shù)據(jù)挖掘數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東酒店管理職業(yè)技術學院《能源工程與管理》2023-2024學年第一學期期末試卷
- 廣東交通職業(yè)技術學院《住宅空間設計》2023-2024學年第一學期期末試卷
- 廣東建設職業(yè)技術學院《高層建筑給排水與消防》2023-2024學年第一學期期末試卷
- 廣東海洋大學《中學英語課程標準研讀與教材分析》2023-2024學年第一學期期末試卷
- 廣東工業(yè)大學《道路軟件應用》2023-2024學年第一學期期末試卷
- 廣東東軟學院《高級木材學》2023-2024學年第一學期期末試卷
- 廣東創(chuàng)新科技職業(yè)學院《初等數(shù)學研究》2023-2024學年第一學期期末試卷
- 《功能材料學概論》課件
- 廣東白云學院《化工單元仿真實訓》2023-2024學年第一學期期末試卷
- 共青科技職業(yè)學院《舞蹈III》2023-2024學年第一學期期末試卷
- 小學師德考評細則
- 軟件定義網(wǎng)絡(SDN)實戰(zhàn)教程課件
- 上海市住院醫(yī)師規(guī)范化培訓公共科目考試題庫-重點傳染病防治知識
- 燃燒仿真.燃燒數(shù)值模擬方法:化學反應動力學模型:燃燒仿真前沿技術與研究
- 2024江蘇省鐵路集團限公司春季招聘24人高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 線性代數(shù)考試練習題帶答案大全(二)
- 2024智能變電站新一代集控站設備監(jiān)控系統(tǒng)技術規(guī)范部分
- 企業(yè)反恐專項經(jīng)費保障制度
- 電梯工程師在電梯設計中的工作內(nèi)容
- 《概率論與數(shù)理統(tǒng)計基礎》全套教學課件
- 2024國家開放大學電大本科《液壓氣動技術》期末試題及答案
評論
0/150
提交評論