湖南省廣益實驗中學2025屆九年級數學第一學期期末監(jiān)測試題含解析_第1頁
湖南省廣益實驗中學2025屆九年級數學第一學期期末監(jiān)測試題含解析_第2頁
湖南省廣益實驗中學2025屆九年級數學第一學期期末監(jiān)測試題含解析_第3頁
湖南省廣益實驗中學2025屆九年級數學第一學期期末監(jiān)測試題含解析_第4頁
湖南省廣益實驗中學2025屆九年級數學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省廣益實驗中學2025屆九年級數學第一學期期末監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,五邊形內接于,若,則的度數是()A. B. C. D.2.如圖,以AB為直徑,點O為圓心的半圓經過點C,若AC=BC=,則圖中陰影部分的面積是()A. B. C. D.3.如圖,O為原點,點A的坐標為(3,0),點B的坐標為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.4.如圖,二次函數y=ax2+bx+c(a>0)的圖象與x軸的交點A、B的橫坐標分別為﹣1和3,則函數值y隨x值的增大而減小時,x的取值范圍是()A.x<1 B.x>1 C.x<2 D.x>25.如圖,正方形的邊長為,對角線相交于點,將直角三角板的直角頂點放在點處,兩直角邊分別與重疊,當三角板繞點順時針旋轉角時,兩直角邊與正方形的邊交于兩點,則四邊形的周長()A.先變小再變大 B.先變大再變小C.始終不變 D.無法確定6.如圖已知CD為⊙O的直徑,過點D的弦DE平行于半徑OA,若∠D的度數是60°,則∠C的度數是()A.25° B.40° C.30° D.50°7.下列關于x的一元二次方程,有兩個不相等的實數根的方程的是()A.x2+1=0 B.x2+2x+1=0 C.x2+2x+3=0 D.x2+2x-3=08.在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是()A.504m2 B.m2 C.m2 D.1009m29.在△ABC中,∠C=Rt∠,AC=6,BC=8,則cosB的值是()A. B. C. D.10.拋物線y=(x+2)2-3的對稱軸是(

)A.直線x=2 B.直線x=-2 C.直線x=-3 D.直線x=311.下列多邊形一定相似的是()A.兩個平行四邊形 B.兩個矩形C.兩個菱形 D.兩個正方形12.若點A(﹣7,y1),B(﹣4,y2),C(5,y3)在反比例函數y=的圖象上,則y1,y2,y3的大小關系是()A.y1<y3<y2 B.y2<y1<y3 C.y3<y2<y1 D.y1<y2<y3二、填空題(每題4分,共24分)13.不透明袋子中有2個紅球和4個藍球,這些球除顏色外無其他差別,從袋子中隨機取出1個球是紅球的概率是______________.14.直角三角形三角形兩直角邊長為3和4,三角形內一點到各邊距離相等,那么這個距離為________.15.三角形的三條邊分別為5,5,6,則該三角形的內切圓半徑為__________16.如圖,在邊長為的正方形中,點為靠近點的四等分點,點為中點,將沿翻折得到連接則點到所在直線距離為________________.17.如圖,BC⊥y軸,BC<OA,點A、點C分別在x軸、y軸的正半軸上,D是線段BC上一點,BD=OA=2,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點,且始終保持∠DEF=45°,將△AEF沿一條邊翻折,翻折前后兩個三角形組成的四邊形為菱形,則線段OE的值為_____.18.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=(x﹣1)2﹣4,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為_____.三、解答題(共78分)19.(8分)如圖,一塊矩形小花園長為20米,寬為18米,主人設計了橫縱方向的等寬小道路(圖中陰影部分),道路之外種植花草,為了使種植花草的面積達到總面積的80%,求道路的寬度.20.(8分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外無其它差別,其中紅球有個,若從中隨機摸出一個,這個球是白球的概率為.(1)求袋子中白球的個數;(2)隨機摸出一個球后,不放回,再隨機摸出一個球,請結合樹狀圖或列表求兩次都摸到相同顏色的小球的概率.21.(8分)已知關于x的一元二次方程.(1)若是方程的一個解,寫出、滿足的關系式;(2)當時,利用根的判別式判斷方程根的情況;(3)若方程有兩個相等的實數根,請寫出一組滿足條件的、的值,并求出此時方程的根.22.(10分)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分別以AB、AC為對稱軸翻折變換,D點的對稱點為E、F,延長EB、FC相交于G點.(1)求證:四邊形AEGF是正方形;(2)求AD的長.23.(10分)如圖,某旅游景區(qū)為方便游客,修建了一條東西走向的木棧道AB,棧道AB與景區(qū)道路CD平行.在C處測得棧道一端A位于北偏西42°方向,在D處測得棧道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木棧道AB的長度(結果保留整數).(參考數據:,,,,,)24.(10分)已知拋物線經過點,,與軸交于點.(1)求這條拋物線的解析式;(2)如圖,點是第三象限內拋物線上的一個動點,求四邊形面積的最大值.25.(12分)(1)解方程(2)計算:26.如圖,斜坡的坡度是1:2.2(坡面的鉛直高度與水平寬度的比稱為坡度),這個斜坡的水平寬度是22米,在坡頂處的同一水平面上()有一座古塔.在坡底處看塔頂的仰角是45°,在坡頂處看塔頂的仰角是60°,求塔高的長.(結果保留根號)

參考答案一、選擇題(每題4分,共48分)1、B【分析】利用圓內接四邊形對角互補得到∠B+∠ADC=180°,∠E+∠ACD=180°,然后利用三角形內角和求出∠ADC+∠ACD=180°-∠CAD,從而使問題得解.【詳解】解:由題意:∠B+∠ADC=180°,∠E+∠ACD=180°∴∠B+∠ADC+∠E+∠ACD=360°又∵∴∠ADC+∠ACD=180°-∠CAD=180°-35°=145°∴∠B+∠E+145°=360°∴∠B+∠E=故選:B【點睛】本題考查圓內接四邊形對角互補和三角形內角和定理,掌握性質正確推理計算是本題的解題關鍵.2、A【分析】先利用圓周角定理得到∠ACB=90°,則可判斷△ACB為等腰直角三角形,接著判斷△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根據扇形的面積公式計算圖中陰影部分的面積.【詳解】∵AB為直徑,∴∠ACB=90°,∵AC=BC=,∴△ACB為等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S陰影部分=S扇形AOC=.故選A.【點睛】本題考查了扇形面積的計算:圓面積公式:S=πr2,(2)扇形:由組成圓心角的兩條半徑和圓心角所對的弧所圍成的圖形叫做扇形.求陰影面積常用的方法:①直接用公式法;②和差法;③割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.3、D【詳解】如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.4、A【分析】首先根據拋物線與坐標軸的交點確定對稱軸,然后根據其開口方向確定當x滿足什么條件數值y隨x值的增大而減小即可.【詳解】∵二次函數的圖象與x軸的交點A、B的橫坐標分別為﹣1、3,∴AB中點坐標為(1,0),而點A與點B是拋物線上的對稱點,∴拋物線的對稱軸為直線x=1,∵開口向上,∴當x<1時,y隨著x的增大而減小,故選:A.【點睛】本題考查了二次函數的性質,掌握二次函數的性質以及判斷方法是解題的關鍵.5、A【分析】由四邊形ABCD是正方形,直角∠FOE,證明△DOF≌△COE,則可得四邊形OECF的周長與OE的變化有關.【詳解】解:四邊形是正方形,,,即,又,隨的變化而變化。由旋轉可知先變小再變大,故選:.【點睛】本題考查了用正方形的性質來證明三角形全等,再利用相等線段進行變形,根據變化的線段來判定四邊形OECF周長的變化.6、C【分析】利用平行線的性質求出∠AOD,然后根據圓周角定理可得答案.【詳解】解:∵DE∥OA,∴∠AOD=∠D=60°,∴∠C=∠AOD=30°,故選:C.【點睛】本題考查圓周角定理,平行線的性質,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.7、D【分析】要判斷所給方程是有兩個不相等的實數根,只要找出方程的判別式,根據判別式的正負情況即可作出判斷.有兩個不相等的實數根的方程,即判別式的值大于0的一元二次方程.【詳解】A、△=0-4×1×1=-4<0,沒有實數根;B、△=22-4×1×1=0,有兩個相等的實數根;C、△=22-4×1×3=-8<0,沒有實數根;D、△=22-4×1×(-3)=16>0,有兩個不相等的實數根,故選D.【點睛】本題考查了根的判別式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的兩個實數根;②當△=0時,方程有兩個相等的兩個實數根;③當△<0時,方程無實數根.8、A【分析】由OA4n=2n知OA2017=+1=1009,據此得出A2A2018=1009-1=1008,據此利用三角形的面積公式計算可得.【詳解】由題意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐標為(1008,0),∴A2018坐標為(1009,1),則A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故選:A.【點睛】本題主要考查點的坐標的變化規(guī)律,解題的關鍵是根據圖形得出下標為4的倍數時對應長度即為下標的一半,據此可得.9、C【分析】利用勾股定理求出AB,根據余弦函數的定義求解即可.【詳解】解:如圖,在中,,,,,故選:C.【點睛】本題考查解直角三角形,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.10、B【解析】試題解析:在拋物線頂點式方程中,拋物線的對稱軸方程為x=h,∴拋物線的對稱軸是直線x=-2,故選B.11、D【分析】利用相似多邊形的定義:對應邊成比例,對應角相等的兩個多邊形相似,逐一分析各選項可得答案.【詳解】解:兩個平行四邊形,既不滿足對應邊成比例,也不滿足對應角相等,所以A錯誤,兩個矩形,滿足對應角相等,但不滿足對應邊成比例,所以B錯誤,兩個菱形,滿足對應邊成比例,但不滿足對應角相等,所以C錯誤,兩個正方形,既滿足對應邊成比例,也滿足對應角相等,所以D正確,故選D.【點睛】本題考查的是相似多邊形的定義與判定,掌握定義法判定多邊形相似是解題的關鍵.12、B【分析】根據反比例函數的性質可以判斷y1,y2,y3的大小,從而可以解答本題.【詳解】解:∵點A(﹣7,y1),B(﹣4,y2),C(5,y3)在反比例函數y=的圖象上,k=3>0,∴該函數在每個象限內,y隨x的增大而減小,函數圖象在第一、三象限,∵﹣7<﹣4,0<5,∴y2<y1<0<y3,即y2<y1<y3,故選:B.【點睛】本題考查反比例函數圖象上點的坐標特征,解答本題的關鍵是明確題意,利用反比例函數的性質解答.二、填空題(每題4分,共24分)13、【分析】直接利用概率公式求解.【詳解】解:從袋子中隨機取出1個球是紅球的概率,故答案為:【點睛】本題考查了概率公式:隨機事件A的概率P(A)=事件A可能出現的結果數除以所有可能出現的結果數.14、1【解析】連接OA,OB,OC利用小三角形的面積和等于大三角形的面積即可解答【詳解】解:連接OA,OB,OC,則點O到三邊的距離就是△AOC,△BOC,△AOB的高線,設到三邊的距離是x,則三個三角形的面積的和是:AC?x+BC?x+AB?x=AC?BC,由題意可得:AC=4,BC=3,AB=5∴×4?x+×3?x+×5?x=×3×4解得:x=1.故答案為:1.【點睛】本題中點到三邊的距離就是直角三角形的內切圓的半徑長,內切圓的半徑=.15、1.5【分析】由等腰三角形的性質和勾股定理,求出CE的長度,然后利用面積相等列出等式,即可求出內切圓的半徑.【詳解】解:如圖,點O為△ABC的內心,設OD=OE=OF=r,∵AC=BC=5,CE平分∠ACB,∴CE⊥AB,AE=BE=,在Rt△ACE中,由勾股定理,得,由三角形的面積相等,則,∴,∴,∴;故答案為:1.5;【點睛】本題考查的是三角形的內切圓與內心,三線合一定理,勾股定理,掌握三角形的面積公式進行計算是解題的關鍵.16、【分析】延長交BC于點M,連接FM,延長交DA的延長線于點P,作DN⊥CP,先證明∽,利用相似的性質求出,然后證明∽,利用相似的性質求出EP,從而得到DP的長,再利用勾股定理求出CP的長,最后利用等面積法計算DN即可.【詳解】如圖,延長交BC于點M,連接FM,延長交DA的延長線于點P,作DN⊥CP,由題可得,,,∴,∵F為AB中點,∴,又∵FM=FM,∴≌(HL),∴,,由折疊可知,,∴,又∵∴,∴∽,∴,∵AD=4,E為四等分點,∴,∴,∴,∴,∵,∴,,∴∽,∴,即,∴EP=6,∴DP=EP+DE=7,在中,,∵,∴.故答案為:.【點睛】本題考查了折疊的性質,全等三角形的判定與性質,相似三角形的判定與性質,勾股定理以及等面積法等知識,較為綜合,難度較大,重點在于作輔助線構造全等或相似三角形.17、6﹣或6或9﹣3【分析】可得到∠DOE=∠EAF,∠OED=∠AFE,即可判定△DOE∽△EAF,分情況進行討論:①當EF=AF時,△AEF沿AE翻折,所得四邊形為菱形,進而得到OE的長;②當AE=AF時,△AEF沿EF翻折,所得四邊形為菱形,進而得到OE的長;③當AE=EF時,△AEF沿AF翻折,所得四邊形為菱形,進而得到OE的長.【詳解】解:連接OD,過點BH⊥x軸,①沿著EA翻折,如圖1:∵∠OAB=45°,AB=3,∴AH=BH=ABsin45°=,∴CO=,∵BD=OA=2,∴BD=2,OA=8,∴BC=8﹣,∴CD=6﹣;∵四邊形FENA是菱形,∴∠FAN=90°,∴四邊形EFAN是正方形,∴△AEF是等腰直角三角形,∵∠DEF=45°,∴DE⊥OA,∴OE=CD=6﹣;②沿著AF翻折,如圖2:∴AE=EF,∴B與F重合,∴∠BDE=45°,∵四邊形ABDE是平行四邊形∴AE=BD=2,∴OE=OA﹣AE=8﹣2=6;③沿著EF翻折,如圖3:∴AE=AF,∵∠EAF=45°,∴△AEF是等腰三角形,過點F作FM⊥x軸,過點D作DN⊥x軸,∴△EFM∽△DNE,∴,∴,∴NE=3﹣,∴OE=6﹣+3﹣=9﹣3;綜上所述:OE的長為6﹣或6或9﹣3,故答案為6﹣或6或9﹣3.【點睛】此題主要考查函數與幾何綜合,解題的關鍵是熟知等腰三角形的性質、平行四邊形、菱形及正方形的性質,利用三角函數、勾股定理及相似三角形的性質進行求解.18、1+【分析】利用二次函數圖象上點的坐標特征可求出點A、B、D的坐標,進而可得出OD、OA、OB,根據圓的性質可得出OM的長度,在Rt△COM中,利用勾股定理可求出CO的長度,再根據CD=CO+OD即可求出結論.【詳解】當x=0時,y=(x﹣1)2﹣4=﹣1,∴點D的坐標為(0,﹣1),∴OD=1;當y=0時,有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴點A的坐標為(﹣1,0),點B的坐標為(0,1),∴AB=4,OA=1,OB=1.連接CM,則CM=AB=2,OM=1,如圖所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案為1+.【點睛】先根據二次函數與一元二次方程的關系,勾股定理,熟練掌握二次函數與一元二次方程的關系是解答本題的關鍵.三、解答題(共78分)19、道路的寬度為2米.【分析】如圖(見解析),小道路可看成由3部分組成,設道路的寬度為x米,利用長方形的面積公式建立方程求解即可.【詳解】如圖,小道路可看成由3部分組成,設道路的寬度為x米,道路1號的長為a,道路3號的長為b,則有依題意可列方程:整理得:,即解得:因為花園長為20米,所以不合題意,舍去故道路的寬度為2米.【點睛】本題考查了一元二次方程的實際應用,依據題意建立方程是解題關鍵.20、(1)袋子中白球有4個;(2)【分析】(1)設白球有

x

個,利用概率公式得方程,解方程即可求解;(2)畫樹狀圖展示所有30種等可能的結果數,再找出兩次摸到顏色相同的小球的結果數,然后根據概率公式求解.【詳解】(1)設袋中白球有x個,由題意得:,解之,得:,經檢驗,是原方程的解,故袋子中白球有4個;(2)設紅球為A、B,白球為,列舉出兩次摸出小球的所有可能情況有:共有30種等可能的結果,其中,兩次摸到相同顏色的小球有14種,故兩次摸到相同顏色的小球的概率為:.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.21、(1);(2)原方程有兩個不相等的實數根;(3),,(答案不唯一).【分析】(1)把方程的解代入即可;(2)根據根的判別式及b=a+1計算即可;(3)根據方程根的情況得到根的判別式,從而得到a、b的值,再代入方程解方程即可.【詳解】解:(1)把代入方程可得,故a、b滿足的關系式為;(2)△,∵,∴△,∴原方程有兩個不相等的實數根;(3)∵方程有兩個相等的實數根,∴△=,即,取,(取值不唯一),則方程為,解得.【點睛】本題考查一元二次方程的解,解法,及根的判別式,熟記根的判別式,掌握一元二次方程的解法是解題的關鍵.22、(1)見解析;(2)AD=1;【分析】(1)先根據△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根據對稱的性質得到AE=AF,從而說明四邊形AEGF是正方形;(2)利用勾股定理,建立關于x的方程模型(x﹣2)2+(x﹣3)2=52,求出AD=x=1.【詳解】(1)證明:由翻折的性質可得,△ABD≌△ABE,△ACD≌△ACF,∴∠DAB=∠EAB,∠DAC=∠FAC,∵∠BAC=45°,∴∠EAF=90°,∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠ADC=90°,∴四邊形AEGF為矩形,∵AE=AD,AF=AD,∴AE=AF,∴矩形AEGF是正方形;(2)解:根據對稱的性質可得:BE=BD=2,CF=CD=3,設AD=x,則正方形AEGF的邊長是x,則BG=EG﹣BE=x﹣2,CG=FG﹣CF=x﹣3,在Rt△BCG中,根據勾股定理可得:(x﹣2)2+(x﹣3)2=52,解得:x=1或x=﹣1(舍去).∴AD=x=1;【點睛】本題考查了翻折對稱的性質,全等三角形和勾股定理,以及正方形的判定,解本題的關鍵是熟練掌握翻折變換的性質:翻折前后圖形的對應邊或對應角相等;有四個角是直角的四邊形是矩形,有一組鄰邊相等的矩形是正方形.23、【分析】過C作CE⊥AB于E,DF⊥AB交AB的延長線于F,于是得到CE∥DF,推出四邊形CDFE是矩形,得到EF=CD=120,DF=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論