版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省唐山樂亭縣聯(lián)考2025屆九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列說法正確的是()A.垂直于半徑的直線是圓的切線 B.經(jīng)過三個點一定可以作圓C.圓的切線垂直于圓的半徑 D.每個三角形都有一個內(nèi)切圓2.以下給出的幾何體中,主視圖是矩形,俯視圖是圓的是()A. B. C. D.3.如圖,在正方形ABCD中,H是對角線BD的中點,延長DC至E,使得DE=DB,連接BE,作DF⊥BE交BC于點G,交BE于點F,連接CH、FH,下列結(jié)論:(1)HC=HF;(2)DG=2EF;(3)BE·DF=2CD2;(4)S△BDE=4S△DFH;(5)HF∥DE,正確的個數(shù)是()A.5 B.4 C.3 D.24.某校“研學(xué)”活動小組在一次野外實踐時,發(fā)現(xiàn)一種植物的主干長出若干數(shù)目的支干,每個支干又長出同樣數(shù)目的小分支,主干、支干和小分支的總數(shù)是,則這種植物每個支干長出的小分支個數(shù)是()A. B. C. D.5.如圖,與是以坐標(biāo)原點為位似中心的位似圖形,若點是的中點,的面積是6,則的面積為()A.9 B.12 C.18 D.246.如圖是一根電線桿在一天中不同時刻的影長圖,試按其天中發(fā)生的先后順序排列,正確的是()A.①②③④ B.④①③② C.④②③① D.④③②①7.10件產(chǎn)品中有2件次品,從中任意抽取1件,恰好抽到次品的概率是()A. B. C. D.8.若,兩點均在函數(shù)的圖象上,且,則與的大小關(guān)系為()A. B. C. D.9.如圖,轉(zhuǎn)盤的紅色扇形圓心角為120°.讓轉(zhuǎn)盤自由轉(zhuǎn)動2次,指針1次落在紅色區(qū)域,1次落在白色區(qū)域的概率是()A. B. C. D.10.二次函數(shù)y=x2+(t﹣1)x+2t﹣1的對稱軸是y軸,則t的值為()A.0 B. C.1 D.2二、填空題(每小題3分,共24分)11.如圖,,直線a、b與、、分別相交于點A、B、C和點D、E、F.若AB=3,BC=5,DE=4,則EF的長為______.12.如圖是反比例函數(shù)在第二象限內(nèi)的圖像,若圖中的矩形OABC的面積為2,則k=________.13.一輛汽車在行駛過程中,路程(千米)與時間(小時)之間的函數(shù)關(guān)系如圖所示.當(dāng)時,關(guān)于的函數(shù)解析式為,那么當(dāng)時,關(guān)于的函數(shù)解析式為________.14.如圖,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延長線于點F,若AD=1,BD=2,BC=4,則EF=________.15.如圖,點A在雙曲線y=上,點B在雙曲線y=(k≠0)上,AB∥x軸,分別過點A,B向x軸作垂線,垂足分別為D,C,若矩形ABCD的面積是9,則k的值為_____.16.如圖,在平面直角坐標(biāo)系中,⊙A與x軸相切于點B,BC為⊙A的直徑,點C在函數(shù)y=(k>0,x>0)的圖象上,若△OAB的面積為,則k的值為_____.17.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了杠桿平衡,后來人們把它歸納為“杠桿原理”,即:阻力×阻力臂=動力×動力臂.小偉欲用撬棍撬動一塊石頭,已知阻力和阻力臂分別是和,則動力(單位:)關(guān)于動力臂(單位:)的函數(shù)解析式為______.18.若方程x2﹣2x﹣4=0的兩個實數(shù)根為a,b,則-a2-b2的值為_________。三、解答題(共66分)19.(10分)用適當(dāng)?shù)姆椒ń夥匠蹋海?)(2).20.(6分)在一個三角形中,如果有一邊上的中線等于這條邊的一半,那么就稱這個三角形為“智慧三角形”.(1)如圖1,已知、是⊙上兩點,請在圓上畫出滿足條件的點,使為“智慧三角形”,并說明理由;(2)如圖2,是等邊三角形,,以點為圓心,的半徑為1畫圓,為邊上的一動點,過點作的一條切線,切點為,求的最小值;(3)如圖3,在平面直角坐標(biāo)系中,⊙的半徑為1,點是直線上的一點,若在⊙上存在一點,使得為“智慧三角形”,當(dāng)其面積取得最小值時,求出此時點的坐標(biāo).21.(6分)某商場以每件20元購進(jìn)一批襯衫,若以每件40元出售,則每天可售出60件,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每漲價1元,商場平均每天可少售出2件,若設(shè)每件襯衫漲價元,回答下列問題:(1)該商場每天售出襯衫件(用含的代數(shù)式表示);(2)求的值為多少時,商場平均每天獲利1050元?(3)該商場平均每天獲利(填“能”或“不能”)達(dá)到1250元?22.(8分)定義:有且僅有一組對角相等的凸四邊形叫做“準(zhǔn)平行四邊形”.例如:凸四邊形中,若,則稱四邊形為準(zhǔn)平行四邊形.(1)如圖①,是上的四個點,,延長到,使.求證:四邊形是準(zhǔn)平行四邊形;(2)如圖②,準(zhǔn)平行四邊形內(nèi)接于,,若的半徑為,求的長;(3)如圖③,在中,,若四邊形是準(zhǔn)平行四邊形,且,請直接寫出長的最大值.23.(8分)如圖,矩形ABCD的邊AB=3cm,AD=4cm,點E從點A出發(fā),沿射線AD移動,以CE為直徑作圓O,點F為圓O與射線BD的公共點,連接EF、CF,過點E作EG⊥EF,EG與圓O相交于點G,連接CG.(1)試說明四邊形EFCG是矩形;(2)當(dāng)圓O與射線BD相切時,點E停止移動,在點E移動的過程中,①矩形EFCG的面積是否存在最大值或最小值?若存在,求出這個最大值或最小值;若不存在,說明理由;②求點G移動路線的長.24.(8分)如圖,在△ABC中,∠C=90°,AB的垂直平分線分別交邊AB、BC于點D、E,連結(jié)AE.(1)如果∠B=25°,求∠CAE的度數(shù);(2)如果CE=2,,求的值.25.(10分)為了提高教學(xué)質(zhì)量,促進(jìn)學(xué)生全面發(fā)展,某中學(xué)計劃投入99000元購進(jìn)一批多媒體設(shè)備和電腦顯示屏,且準(zhǔn)備購進(jìn)電腦顯示屏的數(shù)量是多媒體設(shè)備數(shù)量的6倍.現(xiàn)從商家了解到,一套多媒體設(shè)備和一個電腦顯示屏的售價分別為3000元和600元.(1)求最多能購進(jìn)多媒體設(shè)備多少套?(2)恰逢“雙十一”活動,每套多媒體設(shè)備的售價下降,每個電腦顯示屏的售價下降元,學(xué)校決定多媒體設(shè)備和電腦顯示屏的數(shù)量在(1)中購進(jìn)最多量的基礎(chǔ)上都增加,實際投入資金與計劃投入資金相同,求的值.26.(10分)計算:.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)與圓有關(guān)的基本概念依次分析各項即可判斷.【詳解】A.垂直于半徑且經(jīng)過切點的直線是圓的切線,注意要強(qiáng)調(diào)“經(jīng)過切點”,故本選項錯誤;
B.經(jīng)過不共線的三點一定可以作圓,注意要強(qiáng)調(diào)“不共線”,故本選項錯誤;C.圓的切線垂直于過切點的半徑,注意強(qiáng)調(diào)“過切點”,故本選項錯誤;
D.每個三角形都有一個內(nèi)切圓,本選項正確,故選D.【點睛】本題考查了有關(guān)圓的切線的判定與性質(zhì),解答本題的關(guān)鍵是注意與圓有關(guān)的基本概念中的一些重要字詞,學(xué)生往往容易忽視,要重點強(qiáng)調(diào).2、D【分析】根據(jù)幾何體的正面看得到的圖形,可得答案.【詳解】A、主視圖是圓,俯視圖是圓,故A不符合題意;B、主視圖是矩形,俯視圖是矩形,故B不符合題意;C、主視圖是三角形,俯視圖是圓,故C不符合題意;D、主視圖是個矩形,俯視圖是圓,故D符合題意;故選D.【點睛】本題考查了簡單幾何體的三視圖,熟記簡單幾何的三視圖是解題關(guān)鍵.3、B【解析】由等腰三角形“三線合一”的性質(zhì)可得EF=BF,根據(jù)H是正方形對角線BD的中點可得CH=DH=BH,即可證明HF是△BDE的中位線,可得HF=DE,HF//DE;由BD=DE即可得HC=HF;利用直角三角形兩銳角互余的關(guān)系可得∠CBE=∠CDG,利用ASA可證明△BCE≌△DCG,可得DG=BE,可判定DG=2EF,由正方形的性質(zhì)可得BD2=2CD2,根據(jù)∠CBE=∠CDG,∠E是公共角可證明△BCE∽△DFE,即可得,即BE·DF=DE·BC,可對③進(jìn)行判定,根據(jù)等底等高的三角形面積相等可對④進(jìn)行判定,綜上即可得答案.【詳解】∵BD=DE,DF⊥BE,∴EF=BF,∵H是正方形ABCD對角線BD的中點,∴CH=DH=BH=BD,∴HF是△BDE的中位線,∴HF=DE=BD=CH,HF//DE,故①⑤正確,∵∠CBE+∠E=90°,∠FDE+∠E=90°,∴∠CBE=∠FDE,又∵CD=BC,∠DCG=∠BCE=90°,∴△BCE≌△DCG,∴DG=BE,∵BE=2EF,∴DG=2EF,故②正確,∵∠CBE=∠FDE,∠E=∠E,∴△BCE∽△DFE,∴,即BE·DF=DE·BC,∵BD2=CD2+BC2=2CD2∴DE2=2CD2,∴DE·BC≠2CD2,∴BE·DF≠2CD2,故③錯誤,∵DH=BD,∴S△DFH=S△DFB,∵BF=BE,∴S△DFB=S△BDE,∴S△DFH=S△BDE,即S△BDE=4S△DFH,故④正確,綜上所述:正確的結(jié)論有①②④⑤,共4個,故選B.【點睛】本題考查正方形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及三角形中位線的性質(zhì),綜合性較強(qiáng),熟練掌握所學(xué)性質(zhì)及定理是解題關(guān)鍵.4、C【分析】設(shè)這種植物每個支干長出x個小分支,根據(jù)主干、支干和小分支的總數(shù)是43,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論【詳解】設(shè)這種植物每個支干長出個小分支,依題意,得:,解得:(舍去),.故選C.【點睛】此題考查一元二次方程的應(yīng)用,解題關(guān)鍵在于列出方程5、D【分析】根據(jù)位似圖形的性質(zhì),再結(jié)合點A與點的坐標(biāo)關(guān)系可得出兩個三角形的相似比,再根據(jù)面積比等于相似比的平方即可得出答案.【詳解】解:∵△ABC與△是以坐標(biāo)原點O為位似中心的位似圖形,且A為的中心,∴△ABC與△的相似比為:1:2;∵位似圖形的面積比等于相似比的平方,∴△的面積等于4倍的△ABC的面積,即.故答案為:D.【點睛】本題考查的知識點是位似圖形的性質(zhì),位似是特殊的相似,熟記位似圖形的面積比等于相似比的平方是解題的關(guān)鍵.6、B【分析】北半球而言,從早晨到傍晚影子的指向是:西?西北?北?東北?東,影長由長變短,再變長.【詳解】根據(jù)題意,太陽是從東方升起,故影子指向的方向為西方.然后依次為西北?北?東北?東,即④①③②故選:B.【點睛】本題考查平行投影的特點和規(guī)律.在不同時刻,同一物體的影子的方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在改變,就北半球而言,從早晨到傍晚影子的指向是:西?西北?北?東北?東,影長由長變短,再變長.7、D【分析】由于10件產(chǎn)品中有2件次品,所以從10件產(chǎn)品中任意抽取1件,抽中次品的概率是.【詳解】解:.故選:D.【點睛】本題考查的知識點是用概率公式求事件的概率,根據(jù)題目找出全部情況的總數(shù)以及符合條件的情況數(shù)目是解此題的關(guān)鍵.8、A【分析】將點A(a-1,b),B(a-2,c)代入得出方程組,根據(jù)方程組中兩個方程相減可得出b-c=2a-1,結(jié)合可得到b-c的正負(fù)情況,本題得以解決.【詳解】解:∵點A(a-1,b),B(a-2,c)在二次函數(shù)的圖象上,∴,∴b-c=2a-1,又,∴b-c=2a-1<0,
∴b<c,
故選:A.【點睛】本題考查二次函數(shù)圖象上的點以及不等式的性質(zhì),解答本題的關(guān)鍵是將已知點的坐標(biāo)代入二次函數(shù)解析式,得出b-c=2a-1.9、C【分析】畫出樹狀圖,由概率公式即可得出答案.【詳解】解:由圖得:紅色扇形圓心角為120,白色扇形的圓心角為240°,∴紅色扇形的面積:白色扇形的面積=,畫出樹狀圖如圖,共有9個等可能的結(jié)果,讓轉(zhuǎn)盤自由轉(zhuǎn)動2次,指針1次落在紅色區(qū)域,1次落在白色區(qū)域的結(jié)果有4個,∴讓轉(zhuǎn)盤自由轉(zhuǎn)動2次,指針1次落在紅色區(qū)域,1次落在白色區(qū)域的概率為;故選:C.【點睛】本題考查了樹狀圖和概率計算公式,解決本題的關(guān)鍵是正確理解題意,熟練掌握樹狀圖的畫法步驟.10、C【解析】根據(jù)二次函數(shù)的對稱軸方程計算.【詳解】解:∵二次函數(shù)y=x2+(t﹣1)x+2t﹣1的對稱軸是y軸,∴﹣=0,解得,t=1,故選:C.【點睛】本題考查二次函數(shù)對稱軸性質(zhì),熟練掌握對稱軸的公式是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】直接根據(jù)平行線分線段成比例定理即可得.【詳解】,,,,解得,故答案為:.【點睛】本題考查了平行線分線段成比例定理,熟記平行線分線段成比例定理是解題關(guān)鍵.12、-1【解析】解:因為反比例函數(shù),且矩形OABC的面積為1,所以|k|=1,即k=±1,又反比例函數(shù)的圖象在第二象限內(nèi),k<0,所以k=﹣1.故答案為﹣1.13、【分析】將x=1代入得出此時y的值,然后設(shè)當(dāng)1≤x≤2時,y關(guān)于x的函數(shù)解析式為y=kx+b,再利用待定系數(shù)法求一次函數(shù)解析式即可.【詳解】解:∵當(dāng)時0≤x≤1,y關(guān)于x的函數(shù)解析式為y=1x,
∴當(dāng)x=1時,y=1.
又∵當(dāng)x=2時,y=11,
設(shè)當(dāng)1<x≤2時,y關(guān)于x的函數(shù)解析式為y=kx+b,將(1,1),(2,11)分別代入解析式得,,解得,所以,當(dāng)時,y關(guān)于x的函數(shù)解析式為y=100x-2.故答案為:y=100x-2.【點睛】本題考查了一次函數(shù)的應(yīng)用,主要利用了一次函數(shù)圖象上點的坐標(biāo)特征,待定系數(shù)法求一次函數(shù)解析式,比較簡單.14、【分析】由DE∥BC可得出△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)和平行線的性質(zhì)解答即可.【詳解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案為.【點睛】此題考查相似三角形的判定和性質(zhì),關(guān)鍵是由DE∥BC可得出△ADE∽△ABC.15、1.【分析】過點A作AE⊥y軸于點E,首先得出矩形EODA的面積為:4,利用矩形ABCD的面積是9,則矩形EOCB的面積為:4+9=1,再利用xy=k求出即可.【詳解】過點A作AE⊥y軸于點E,∵點A在雙曲線y=上,∴矩形EODA的面積為:4,∵矩形ABCD的面積是9,∴矩形EOCB的面積為:4+9=1,則k的值為:xy=k=1.故答案為1.【點睛】此題主要考查了反比例函數(shù)關(guān)系k的幾何意義,得出矩形EOCB的面積是解題關(guān)鍵.16、1【分析】連接OC,根據(jù)反比例函數(shù)的幾何意義,求出△BCO面積即可解決問題.【詳解】解:如圖,連接OC,∵BC是直徑,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A與x軸相切于點B,∴CB⊥x軸,∴S△CBO=,∴k=1,故答案為:1.【點睛】本題考查反比例函數(shù)、切線的性質(zhì)等知識,解題的關(guān)鍵是理解S△BCO=,屬于中考??碱}型.17、【分析】直接利用阻力×阻力臂=動力×動力臂,進(jìn)而將已知量據(jù)代入得出函數(shù)關(guān)系式.【詳解】∵阻力×阻力臂=動力×動力臂.小偉欲用撬棍撬動一塊石頭,已知阻力和阻力臂分別是1200N和0.5m,∴動力F(單位:N)關(guān)于動力臂l(單位:m)的函數(shù)解析式為:1200×0.5=Fl,則.故答案為:.【點睛】此題主要考查了反比例函數(shù)的應(yīng)用,正確讀懂題意得出關(guān)系式是解題關(guān)鍵.18、-12【分析】根據(jù)一元二次方程的解及根與系數(shù)的關(guān)系,得出兩根之和與兩根之積,再將待求式利用完全平方公式表示成關(guān)于兩根之和與兩根之積的式子,最后代入求值即可.【詳解】解:∵方程x2﹣2x﹣4=0的兩個實數(shù)根為,∴,∴=-4-8=-12.故答案為:-12.【點睛】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,將待求式利用完全平方公式表示成關(guān)于兩根之和與兩根之積的式子是解題的關(guān)鍵.三、解答題(共66分)19、(1);;(2)=,=1.【分析】(1)用公式法求解;(2)用因式分解法求解.【詳解】解:(1)a=2,b=3,c=-5,△=32-1×2×(-5)=19>0,所以x1===1,x1===;(2)[(x+3)+(1-2x)][(x+3)-(1-2x)]=0(-x+1)(3x+2)=0所以3x+2=0或-x+1=0,解得x1=,x2=1.【點睛】本題考查了一元二次方程的解法,根據(jù)方程的特點選擇適當(dāng)?shù)姆椒ㄊ墙鉀Q此題的關(guān)鍵.20、(1)見解析;(2);(1)或【分析】(1)連接AO并且延長交圓于,連接AO并且延長交圓于,即可求解;
(2)根據(jù)MN為⊙的切線,應(yīng)用勾股定理得,所以O(shè)M最小時,MN最??;根據(jù)垂線段最短,得到當(dāng)M和BC中點重合時,OM最小為,此時根據(jù)勾股定理求解DE,DE和MN重合,即為所求;
(1)根據(jù)“智慧三角形”的定義可得為直角三角形,根據(jù)題意可得一條直角邊為1,當(dāng)寫斜邊最短時,另一條直角邊最短,則面積取得最小值,由垂線段最短可得斜邊最短為1,根據(jù)勾股定理可求得另一條直角邊,再根據(jù)三角形面積可求得斜邊的高,即點P的橫坐標(biāo),再根據(jù)勾股定理可求點P的縱坐標(biāo),從而求解.【詳解】(1)如圖1,點和均為所求理由:連接、并延長,分別交于點、,連接、,∵是的直徑,∴,∴是“智慧三角形”同理可得,也是“智慧三角形”(2)∵是的切線,∴,∴,∴當(dāng)最小時,最小,即當(dāng)時,取得最小值,如圖2,作于點,過點作的一條切線,切點為,連接,∵是等邊三角形,,∴,,∴,∵是的一條切線,∴,,∴,當(dāng)點與重合時,與重合,此時.(1)由“智慧三角形”的定義可得為直角三角形,根據(jù)題意,得一條直角邊.∴當(dāng)最小時,的面積最小,即最小時.如圖1,由垂線段最短,可得的最小值為1.∴.過作軸,∵,∴.在中,,故符合要求的點坐標(biāo)為或.【點睛】本題考查了圓與勾股定理的綜合應(yīng)用,掌握圓的相關(guān)知識,熟練應(yīng)用勾股定理,明確“智慧三角形”的定義是解題的關(guān)鍵.21、(1);(2)當(dāng)時,商場平均每天獲利1050元;(3)能【分析】(1)根據(jù)題意寫出答案即可.(2)根據(jù)題意列出方程,解出答案即可.(3)令利潤代數(shù)式為1250,解出即可判斷.【詳解】(1)根據(jù)題意:每天可售出60件,如果每件襯衫每漲價1元,商場平均每天可少售出2件,則商場每天售出襯衫:(2)解得,(不符合題意,舍去).答:當(dāng)時,商場平均每天獲利1050元.(3)根據(jù)題意可得:解得:x=5所以,商場平均每天獲利能達(dá)到1250元【點睛】本題考查一元二次方程的應(yīng)用,關(guān)鍵在于理解題意找出等量關(guān)系.22、(1)見解析;(2);(3)【分析】(1)先根據(jù)同弧所對的圓周角相等證明三角形ABC為等邊三角形,得到∠ACB=60°,再求出∠APB=60°,根據(jù)AQ=AP判定△APQ為等邊三角形,∠AQP=∠QAP=60°,故∠ACB=∠AQP,可判斷∠QAC>120°,∠QBC<120°,故∠QAC≠∠QBC,可證四邊形是準(zhǔn)平行四邊形;(2)根據(jù)已知條件可判斷∠ABC≠∠ADC,則可得∠BAD=∠BCD=90°,連接BD,則BD為直徑為10,根據(jù)BC=CD得△BCD為等腰直角三角形,則∠BAC=∠BDC=45°,在直角三角形BCD中利用勾股定理或三角函數(shù)求出BC的長,過B點作BE⊥AC,分別在直角三角形ABE和△BEC中,利用三角函數(shù)和勾股定理求出AE、CE的長,即可求出AC的長.(3)根據(jù)已知條件可得:∠ADC=∠ABC=60°,延長BC到E點,使BE=BA,可得三角形ABE為等邊三角形,∠E=60°,過A、E、C三點作圓o,則AE為直徑,點D在點C另一側(cè)的弧AE上(點A、點E除外),連接BO交弧AE于D點,則此時BD的長度最大,根據(jù)已知條件求出BO、OD的長度,即可求解.【詳解】(1)∵∴∠ABC=∠BAC=60°∴△ABC為等邊三角形,∠ACB=60°∵∠APQ=180°-∠APC-∠CPB=60°又AP=AQ∴△APQ為等邊三角形∴∠AQP=∠QAP=60°∴∠ACB=∠AQP∵∠QAC=∠QAP+∠PAB+∠BAC=120°+∠PAB>120°故∠QBC=360°-∠AQP-∠ACB-∠QAC<120°∴∠QAC≠∠QBC∴四邊形是準(zhǔn)平行四邊形(2)連接BD,過B點作BE⊥AC于E點∵準(zhǔn)平行四邊形內(nèi)接于,∴∠ABC≠∠ADC,∠BAD=∠BCD∵∠BAD+∠BCD=180°∴∠BAD=∠BCD=90°∴BD為的直徑∵的半徑為5∴BD=10∵BC=CD,∠BCD=90°∴∠CBD=∠BDC=45°∴BC=BDsin∠BDC=10,∠BAC=∠BDC=45°∵BE⊥AC∴∠BEA=∠BEC=90°∴AE=ABsin∠BAC=6∵∠ABE=∠BAE=45°∴BE=AE=在直角三角形BEC中,EC=∴AC=AE+EC=(3)在中,∴∠ABC=60°∵四邊形是準(zhǔn)平行四邊形,且∴∠ADC=∠ABC=60°延長BC到E點,使BE=BA,可得三角形ABE為等邊三角形,∠E=60°,過A、E、C三點作圓o,因為∠ACE=90°,則AE為直徑,點D在點C另一側(cè)的弧AE上(點A、點E除外),此時,∠ADC=∠AEC=60°,連接BO交弧AE于D點,則此時BD的長度最大.在等邊三角形ABE中,∠ACB=90°,BC=2∴AE=BE=2BC=4∴OE=OA=OD=2∴BO⊥AE∴BO=BEsin∠E=4∴BD=BO+0D=2+即BD長的最大值為2+【點睛】本題考查的是新概念及圓的相關(guān)知識,理解新概念的含義、掌握圓的性質(zhì)是解答的關(guān)鍵,本題的難點在第(3)小問,考查的是與圓相關(guān)的最大值及最小值問題,把握其中的不變量作出圓是關(guān)鍵.23、(1)證明見解析;(2)①存在,矩形EFCG的面積最大值為12,最小值為;②.【解析】試題分析:(1)只要證到三個內(nèi)角等于90°即可.(2)①易證點D在⊙O上,根據(jù)圓周角定理可得∠FCE=∠FDE,從而證到△CFE∽△DAB,根據(jù)相似三角形的性質(zhì)可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范圍就可求出S矩形ABCD的范圍.②根據(jù)圓周角定理和矩形的性質(zhì)可證到∠GDC=∠FDE=定值,從而得到點G的移動的路線是線段,只需找到點G的起點與終點,求出該線段的長度即可.試題解析:解:(1)證明:如圖,∵CE為⊙O的直徑,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四邊形EFCG是矩形.(2)①存在.如答圖1,連接OD,∵四邊形ABCD是矩形,∴∠A=∠ADC=90°.∵點O是CE的中點,∴OD=OC.∴點D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴.∵AD=1,AB=2,∴BD=5.∴.∴S矩形ABCD=2S△CFE=.∵四邊形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.當(dāng)點E在點A(E′)處時,點F在點B(F′)處,點G在點D(G′處,如答圖1所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湘教版地理七年級上冊《第三節(jié) 影響氣候的主要因素》聽課評課記錄2
- 蘇科版數(shù)學(xué)七年級上冊《有理數(shù)的減法法則》聽評課記錄2
- 現(xiàn)場管理承包協(xié)議書
- 生活指南版權(quán)使用合同(2篇)
- 魯人版道德與法治九年級上冊2.2 做大蛋糕 分好蛋糕 聽課評課記錄
- 聽評課一年級記錄怎么寫
- 吉林省八年級數(shù)學(xué)下冊17函數(shù)及其圖象17.4反比例函數(shù)17.4.1反比例函數(shù)聽評課記錄新版華東師大版
- 蘇科版九年級數(shù)學(xué)聽評課記錄:第52講 用待定系數(shù)法求二次函數(shù)的解析式
- 五年級數(shù)學(xué)上冊聽評課記錄
- 滬科版數(shù)學(xué)七年級下冊10.2《平行線的判定》聽評課記錄3
- 小學(xué)六年級數(shù)學(xué)上冊《簡便計算》練習(xí)題(310題-附答案)
- 2024年河南省《輔警招聘考試必刷500題》考試題庫及答案【全優(yōu)】
- -情景交際-中考英語復(fù)習(xí)考點
- 安全隱患報告和舉報獎勵制度
- 地理標(biāo)志培訓(xùn)課件
- 2023行政主管年終工作報告五篇
- 2024年中國養(yǎng)老產(chǎn)業(yè)商學(xué)研究報告-銀發(fā)經(jīng)濟(jì)專題
- 公園衛(wèi)生保潔考核表
- 培訓(xùn)如何上好一堂課
- 高教版2023年中職教科書《語文》(基礎(chǔ)模塊)下冊教案全冊
- 人教版英語七年級上冊閱讀理解專項訓(xùn)練16篇(含答案)
評論
0/150
提交評論