重慶市渝中區(qū)名校2023-2024學年中考數(shù)學模擬預測題含解析_第1頁
重慶市渝中區(qū)名校2023-2024學年中考數(shù)學模擬預測題含解析_第2頁
重慶市渝中區(qū)名校2023-2024學年中考數(shù)學模擬預測題含解析_第3頁
重慶市渝中區(qū)名校2023-2024學年中考數(shù)學模擬預測題含解析_第4頁
重慶市渝中區(qū)名校2023-2024學年中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市渝中區(qū)名校2023-2024學年中考數(shù)學模擬預測題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④2.若一個凸多邊形的內角和為720°,則這個多邊形的邊數(shù)為A.4 B.5 C.6 D.73.若2m﹣n=6,則代數(shù)式m-n+1的值為()A.1 B.2 C.3 D.44.如圖,已知點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.805.如圖,平行四邊形ABCD的頂點A、B、D在⊙O上,頂點C在⊙O直徑BE上,連結AE,若∠E=36°,則∠ADC的度數(shù)是()A.44° B.53° C.72° D.54°6.如圖,四邊形ABCD內接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°7.某班組織了針對全班同學關于“你最喜歡的一項體育活動”的問卷調查后,繪制出頻數(shù)分布直方圖,由圖可知,下列結論正確的是()A.最喜歡籃球的人數(shù)最多 B.最喜歡羽毛球的人數(shù)是最喜歡乒乓球人數(shù)的兩倍C.全班共有50名學生 D.最喜歡田徑的人數(shù)占總人數(shù)的10%8.二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一坐標系內的圖象大致為()A. B. C. D.9.不論x、y為何值,用配方法可說明代數(shù)式x2+4y2+6x﹣4y+11的值()A.總不小于1B.總不小于11C.可為任何實數(shù)D.可能為負數(shù)10.下列計算正確的是()A. B.0.00002=2×105C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設運動時間為ts,當t=__________時,△CPQ與△CBA相似.12.如圖,點A、B、C、D在⊙O上,O點在∠D的內部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=▲°.13.如圖,圓柱形容器高為18cm,底面周長為24cm,在杯內壁離杯底4cm的點B處有乙滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿2cm與蜂蜜相對的點A處,則螞蟻從外幣A處到達內壁B處的最短距離為_______.14.分解因式:x2y﹣2xy2+y3=_____.15.如圖,拋物線y=ax2+bx+c與x軸相交于A、B兩點,點A在點B左側,頂點在折線M﹣P﹣N上移動,它們的坐標分別為M(﹣1,4)、P(3,4)、N(3,1).若在拋物線移動過程中,點A橫坐標的最小值為﹣3,則a﹣b+c的最小值是_____.16.已知、為兩個連續(xù)的整數(shù),且,則=________.三、解答題(共8題,共72分)17.(8分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).請畫出△ABC向左平移5個單位長度后得到的△ABC;請畫出△ABC關于原點對稱的△ABC;在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.18.(8分)如圖,點C、E、B、F在同一直線上,AC∥DF,AC=DF,BC=EF,求證:AB=DE19.(8分)九(1)班同學分成甲、乙兩組,開展“四個城市建設”知識競賽,滿分得5分,得分均為整數(shù).小馬虎根據(jù)競賽成績,繪制了如圖所示的統(tǒng)計圖.經確認,扇形統(tǒng)計圖是正確的,條形統(tǒng)計圖也只有乙組成績統(tǒng)計有一處錯誤.(1)指出條形統(tǒng)計圖中存在的錯誤,并求出正確值;(2)若成績達到3分及以上為合格,該校九年級有800名學生,請估計成績未達到合格的有多少名?(3)九(1)班張明、李剛兩位成績優(yōu)秀的同學被選中參加市里組織的“四個城市建設”知識競賽.預賽分為A、B、C、D四組進行,選手由抽簽確定.張明、李剛兩名同學恰好分在同一組的概率是多少?20.(8分)某商場計劃從廠家購進甲、乙、丙三種型號的電冰箱80臺,其中甲種電冰箱的臺數(shù)是乙種電冰箱臺數(shù)的2倍.具體情況如下表:甲種乙種丙種進價(元/臺)120016002000售價(元/臺)142018602280經預算,商場最多支出132000元用于購買這批電冰箱.(1)商場至少購進乙種電冰箱多少臺?(2)商場要求甲種電冰箱的臺數(shù)不超過丙種電冰箱的臺數(shù).為獲得最大利潤,應分別購進甲、乙、丙電冰箱多少臺?獲得的最大利潤是多少?21.(8分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.22.(10分)甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系.請根據(jù)圖象解答下列問題:當轎車剛到乙地時,此時貨車距離乙地千米;當轎車與貨車相遇時,求此時x的值;在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.23.(12分)如圖,拋物線y=x2+bx+c與x軸交于點A(﹣1,0),B(4,0)與y軸交于點C,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線1,交拋物線與點Q.求拋物線的解析式;當點P在線段OB上運動時,直線1交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;在點P運動的過程中,坐標平面內是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.24.如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D,過點D作⊙O的切線DE交AC于點E,交AB延長線于點F.(1)求證:BD=CD;(2)求證:DC2=CE?AC;(3)當AC=5,BC=6時,求DF的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

由條件設AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結論.【詳解】解:設AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質的運用,相似三角形的判定及性質的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質的運用,解答時根據(jù)比例關系設出未知數(shù)表示出線段的長度是關鍵.2、C【解析】

設這個多邊形的邊數(shù)為n,根據(jù)多邊形的內角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設這個多邊形的邊數(shù)為n,由多邊形的內角和是720°,根據(jù)多邊形的內角和定理得(n-2)180°=720°.解得n=6.故選C.【點睛】本題主要考查多邊形的內角和定理,熟練掌握多邊形的內角和定理是解答本題的關鍵.3、D【解析】

先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數(shù)式,解題的關鍵是掌握整體代入法.4、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.5、D【解析】

根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,再根據(jù)直角三角形的性質和平行四邊形的性質可得解.【詳解】根據(jù)直徑所對的圓周角為直角可得∠BAE=90°,根據(jù)∠E=36°可得∠B=54°,根據(jù)平行四邊形的性質可得∠ADC=∠B=54°.故選D【點睛】本題考查了平行四邊形的性質、圓的基本性質.6、D【解析】分析:先根據(jù)圓內接四邊形的性質得到然后根據(jù)圓周角定理求詳解:∵∴∴故選D.點睛:考查圓內接四邊形的性質,圓周角定理,掌握圓內接四邊形的對角互補是解題的關鍵.7、C【解析】【分析】觀察直方圖,根據(jù)直方圖中提供的數(shù)據(jù)逐項進行分析即可得.【詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數(shù)最多,故A選項錯誤;B.最喜歡羽毛球的人數(shù)是最喜歡田徑人數(shù)的兩倍,故B選項錯誤;C.全班共有12+20+8+4+6=50名學生,故C選項正確;D.最喜歡田徑的人數(shù)占總人數(shù)的=8%,故D選項錯誤,故選C.【點睛】本題考查了頻數(shù)分布直方圖,從直方圖中得到必要的信息進行解題是關鍵.8、D【解析】

根據(jù)二次函數(shù)圖象開口向上得到a>0,再根據(jù)對稱軸確定出b,根據(jù)二次函數(shù)圖形與軸的交點個數(shù),判斷的符號,根據(jù)圖象發(fā)現(xiàn)當x=1時y=a+b+c<0,然后確定出一次函數(shù)圖象與反比例函數(shù)圖象的情況,即可得解.【詳解】∵二次函數(shù)圖象開口方向向上,∴a>0,∵對稱軸為直線∴b<0,二次函數(shù)圖形與軸有兩個交點,則>0,∵當x=1時y=a+b+c<0,∴的圖象經過第二四象限,且與y軸的正半軸相交,反比例函數(shù)圖象在第二、四象限,只有D選項圖象符合.故選:D.【點睛】考查反比例函數(shù)的圖象,一次函數(shù)的圖象,二次函數(shù)的圖象,掌握函數(shù)圖象與系數(shù)的關系是解題的關鍵.9、A【解析】

利用配方法,根據(jù)非負數(shù)的性質即可解決問題;【詳解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,

又∵(x+3)2≥0,(2y-1)2≥0,

∴x2+4y2+6x-4y+11≥1,

故選:A.【點睛】本題考查配方法的應用,非負數(shù)的性質等知識,解題的關鍵是熟練掌握配方法.10、D【解析】

在完成此類化簡題時,應先將分子、分母中能夠分解因式的部分進行分解因式.有些需要先提取公因式,而有些則需要運用公式法進行分解因式.通過分解因式,把分子分母中能夠分解因式的部分,分解成乘積的形式,然后找到其中的公因式約去.【詳解】解:A、原式=;故本選項錯誤;B、原式=2×10-5;故本選項錯誤;C、原式=;故本選項錯誤;D、原式=;故本選項正確;故選:D.【點睛】分式的乘除混合運算一般是統(tǒng)一為乘法運算,如果有乘方,還應根據(jù)分式乘方法則先乘方,即把分子、分母分別乘方,然后再進行乘除運算.同樣要注意的地方有:一是要確定好結果的符號;二是運算順序不能顛倒.二、填空題(本大題共6個小題,每小題3分,共18分)11、4.8或【解析】

根據(jù)題意可分兩種情況,①當CP和CB是對應邊時,△CPQ∽△CBA與②CP和CA是對應邊時,△CPQ∽△CAB,根據(jù)相似三角形的性質分別求出時間t即可.【詳解】①CP和CB是對應邊時,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對應邊時,△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當t=4.8或時,△CPQ與△CBA相似.【點睛】此題主要考查相似三角形的性質,解題的關鍵是分情況討論.12、1.【解析】試題分析:∵四邊形OABC為平行四邊形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四邊形ABCD是圓的內接四邊形,∴∠D+∠B=180°.又∠D=∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案為1°.考點:①平行四邊形的性質;②圓內接四邊形的性質.13、20cm.【解析】

將杯子側面展開,建立A關于EF的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為所求.【詳解】解:如答圖,將杯子側面展開,作A關于EF的對稱點A′,連接A′B,則A′B即為最短距離.根據(jù)勾股定理,得(cm).故答案為:20cm.【點睛】本題考查了平面展開---最短路徑問題,將圖形展開,利用軸對稱的性質和勾股定理進行計算是解題的關鍵.同時也考查了同學們的創(chuàng)造性思維能力.14、y(x﹣y)2【解析】

原式提取公因式,再利用完全平方公式分解即可【詳解】x2y﹣2xy2+y3=y(tǒng)(x2-2xy+y2)=y(x-y)2.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握運算法則是解本題的關鍵.15、﹣1.【解析】

由題意得:當頂點在M處,點A橫坐標為-3,可以求出拋物線的a值;當頂點在N處時,y=a-b+c取得最小值,即可求解.【詳解】解:由題意得:當頂點在M處,點A橫坐標為-3,則拋物線的表達式為:y=a(x+1)2+4,將點A坐標(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,當x=-1時,y=a-b+c,頂點在N處時,y=a-b+c取得最小值,頂點在N處,拋物線的表達式為:y=-(x-3)2+1,當x=-1時,y=a-b+c=-(-1-3)2+1=-1,故答案為-1.【點睛】本題考查的是二次函數(shù)知識的綜合運用,本題的核心是確定頂點在M、N處函數(shù)表達式,其中函數(shù)的a值始終不變.16、11【解析】

根據(jù)無理數(shù)的性質,得出接近無理數(shù)的整數(shù),即可得出a,b的值,即可得出答案.【詳解】∵a<<b,a、b為兩個連續(xù)的整數(shù),

∴,

∴a=5,b=6,

∴a+b=11.

故答案為11.【點睛】本題考查的是估算無理數(shù)的大小,熟練掌握無理數(shù)是解題的關鍵.三、解答題(共8題,共72分)17、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標為:(2,0)【解析】

(1)按題目的要求平移就可以了關于原點對稱的點的坐標變化是:橫、縱坐標都變?yōu)橄喾磾?shù),找到對應點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉為了已知直線與直線一側的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標為:(2,0)【點睛】1、圖形的平移;2、中心對稱;3、軸對稱的應用18、證明見解析.【解析】證明:∵AC//DF∴∠C=∠F在ΔACB和ΔDFE中∴△ABC≌△DEF(SAS)19、(1)見解析;(2)140人;(1).【解析】

(1)分別利用條形統(tǒng)計圖和扇形統(tǒng)計圖得出總人數(shù),進而得出錯誤的哪組;(2)求出1分以下所占的百分比即可估計成績未達到合格的有多少名學生;(1)根據(jù)題意可以畫出相應的樹狀圖,從而可以求得張明、李剛兩名同恰好分在同一組的概率.【詳解】(1)由統(tǒng)計圖可得:(1分)(2分)(4分)(5分)甲(人)01764乙(人)22584全體(%)512.5101517.5乙組得分的人數(shù)統(tǒng)計有誤,理由:由條形統(tǒng)計圖和扇形統(tǒng)計圖的對應可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,故乙組得5分的人數(shù)統(tǒng)計有誤,正確人數(shù)應為:40×17.5%﹣4=1.(2)800×(5%+12.5%)=140(人);(1)如圖得:∵共有16種等可能的結果,所選兩人正好分在一組的有4種情況,∴所選兩人正好分在一組的概率是:.【點睛】本題考查列表法與樹狀圖法、用樣本估計總體、條形統(tǒng)計圖、扇形統(tǒng)計圖,解答本題的關鍵是明確題意,找出所求問題需要的條件.20、(1)商場至少購進乙種電冰箱14臺;(2)商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【解析】

(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80-3x)臺,根據(jù)“商場最多支出132000元用于購買這批電冰箱”列出不等式,解之即可得;(2)根據(jù)“總利潤=甲種冰箱利潤+乙種冰箱利潤+丙種冰箱利潤”列出W關于x的函數(shù)解析式,結合x的取值范圍,利用一次函數(shù)的性質求解可得.【詳解】(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80﹣3x)臺.根據(jù)題意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商場至少購進乙種電冰箱14臺;(2)由題意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W隨x的增大而減小,∴當x=14時,W取最大值,且W最大=﹣140×14+22400=20440,此時,商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【點睛】本題主要考查一次函數(shù)的應用與一元一次不等式的應用,解題的關鍵是理解題意找到題目蘊含的不等關系和相等關系,并據(jù)此列出不等式與函數(shù)解析式.21、(1)詳見解析;(2)①67.5°;②90°.【解析】

(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據(jù)題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據(jù)四邊形ADFP是菱形和菱形的性質,可以求得∠DAE的度數(shù);②根據(jù)四邊形BFDP是正方形,可以求得∠DAE的度數(shù).【詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【點睛】本題考查菱形的判定與性質、切線的性質、正方形的判定,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用菱形的性質和正方形的性質解答.22、(1)30;(2)當x=3.9時,轎車與貨車相遇;(3)在兩車行駛過程中,當轎車與貨車相距20千米時,x的值為3.5或4.3小時.【解析】

(1)根據(jù)圖象可知貨車5小時行駛300千米,由此求出貨車的速度為60千米/時,再根據(jù)圖象得出貨車出發(fā)后4.5小時轎車到達乙地,由此求出轎車到達乙地時,貨車行駛的路程為270千米,而甲、乙兩地相距300千米,則此時貨車距乙地的路程為:300﹣270=30千米;(2)先求出線段CD對應的函數(shù)關系式,再根據(jù)兩直線的交點即可解答;(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)根據(jù)圖象信息:貨車的速度V貨=,∵轎車到達乙地的時間為貨車出發(fā)后4.5小時,∴轎車到達乙地時,貨車行駛的路程為:4.5×60=270(千米),此時,貨車距乙地的路程為:300﹣270=30(千米).所以轎車到達乙地后,貨車距乙地30千米.故答案為30;(2)設CD段函數(shù)解析式為y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其圖象上,,解得,∴CD段函數(shù)解析式:y=110x﹣195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴當x=3.9時,轎車與貨車相遇;(3)當x=2.5時,y貨=150,兩車相距=150﹣80=70>20,由題意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小時.答:在兩車行駛過程中,當轎車與貨車相距20千米時,x的值為3.5或4.3小時.【點睛】本題考查了一次函數(shù)的應用,對一次函數(shù)圖象的意義的理解,待定系數(shù)法求一次函數(shù)的解析式的運用,行程問題中路程=速度×時間的運用,本題有一定難度,其中求出貨車與轎車的速度是解題的關鍵.23、(1);(2)當m=2時,四邊形CQMD為平行四邊形;(3)Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)【解析】

(1)直接將A(-1,0),B(4,0)代入拋物線y=x2+bx+c方程即可;

(2)由(1)中的解析式得出點C的坐標C(0,-2),從而得出點D(0,2),求出直線BD:y=?x+2,設點M(m,?m+2),Q(m,m2?m?2),可得MQ=?m2+m+4,根據(jù)平行四邊形的性質可得QM=CD=4,即?m2+m+4=4可解得m=2;

(3)由Q是以BD為直角邊的直角三角形,所以分兩種情況討論,①當∠BDQ=90°時,則BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②當∠DBQ=90°時,則BD2+BQ2=DQ2,列出方程可以求出Q3(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論