2024屆四川省成都市雙流區(qū)數(shù)學(xué)高一下期末考試試題含解析_第1頁
2024屆四川省成都市雙流區(qū)數(shù)學(xué)高一下期末考試試題含解析_第2頁
2024屆四川省成都市雙流區(qū)數(shù)學(xué)高一下期末考試試題含解析_第3頁
2024屆四川省成都市雙流區(qū)數(shù)學(xué)高一下期末考試試題含解析_第4頁
2024屆四川省成都市雙流區(qū)數(shù)學(xué)高一下期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆四川省成都市雙流區(qū)數(shù)學(xué)高一下期末考試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知分別為內(nèi)角的對(duì)邊,若,b=則=()A. B. C. D.2.已知正四棱錐的底面邊長為2,側(cè)棱長為,則該正四棱錐的體積為()A. B. C. D.3.等比數(shù)列的前n項(xiàng)和為,若,則等于()A.-3 B.5 C.33 D.-314.《九章算術(shù)》中,將四個(gè)面均為直角三角形的三棱錐稱為鱉臑,若三棱錐為鱉臑,其中平面,,三棱錐的四個(gè)頂點(diǎn)都在球的球面上,則該球的體積是()A. B. C. D.5.設(shè),是兩個(gè)不同的平面,a,b是兩條不同的直線,給出下列四個(gè)命題,正確的是()A.若,,則 B.若,,,則C.若,,,則 D.若,,,則6.已知數(shù)列的通項(xiàng)公式是,則該數(shù)列的第五項(xiàng)是()A. B. C. D.7.《九章算術(shù)》中,將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑,若三棱錐為鱉臑,平面,三棱錐的四個(gè)頂點(diǎn)都在球的球面上,則球的表面積為()A. B. C. D.8.直線的傾斜角為()A. B. C. D.9.函數(shù)的圖象可能是().A. B. C. D.10.已知函數(shù),則下列命題正確的是()①的最大值為2;②的圖象關(guān)于對(duì)稱;③在區(qū)間上單調(diào)遞增;④若實(shí)數(shù)m使得方程在上恰好有三個(gè)實(shí)數(shù)解,,,則;A.①② B.①②③ C.①③④ D.①②③④二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)向量,,且,則______.12.?dāng)?shù)列中,如果存在使得“,且”成立(其中,),則稱為的一個(gè)“谷值”。若且存在“谷值”則實(shí)數(shù)的取值范圍是__________.13.已知向量,則________14.我國高鐵發(fā)展迅速,技術(shù)先進(jìn).經(jīng)統(tǒng)計(jì),在經(jīng)停某站的高鐵列車中,有10個(gè)車次的正點(diǎn)率為0.97,有20個(gè)車次的正點(diǎn)率為0.98,有10個(gè)車次的正點(diǎn)率為0.99,則經(jīng)停該站高鐵列車所有車次的平均正點(diǎn)率的估計(jì)值為___________.15.若圓:與圓:相交于,兩點(diǎn),且兩圓在點(diǎn)處的切線互相垂直,則公共弦的長度是______.16.若滿足約束條件,的最小值為,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的值域?yàn)锳,.(1)當(dāng)?shù)臑榕己瘮?shù)時(shí),求的值;(2)當(dāng)時(shí),在A上是單調(diào)遞增函數(shù),求的取值范圍;(3)當(dāng)時(shí),(其中),若,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,在處取得最小值,試探討應(yīng)該滿足的條件.18.在中,內(nèi)角所對(duì)的邊分別為.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.19.已知函數(shù),作如下變換:.(1)分別求出函數(shù)的對(duì)稱中心和單調(diào)增區(qū)間;(2)寫出函數(shù)的解析式、值域和最小正周期.20.已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),若數(shù)列的前項(xiàng)和為,求證:.21.某校為創(chuàng)建“綠色校園”,在校園內(nèi)種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內(nèi)的生長規(guī)律如下:A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數(shù):(表示種植前樹木的高度,?。?)若要求6年內(nèi)樹木的高度超過5米,你會(huì)選擇哪種樹木?為什么?(2)若選C樹木,從種植起的6年內(nèi),第幾年內(nèi)生長最快?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

由已知利用正弦定理可求的值,根據(jù)余弦定理可得,解方程可得的值.【詳解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,負(fù)值舍去.故選.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了方程思想,屬于基礎(chǔ)題.2、D【解析】

求出正四棱錐的高后可求其體積.【詳解】正四棱錐底面的對(duì)角線的長度為,故正四棱錐的高為,所以體積為,故選D.【點(diǎn)睛】正棱錐中,棱錐的高、斜高、側(cè)棱和底面外接圓的半徑可構(gòu)成四個(gè)直角三角形,它們溝通了棱錐各個(gè)幾何量之間的關(guān)系,解題中注意利用它們實(shí)現(xiàn)不同幾何量之間的聯(lián)系.3、C【解析】

由等比數(shù)列的求和公式結(jié)合條件求出公比,再利用等比數(shù)列求和公式可求出.【詳解】設(shè)等比數(shù)列的公比為(公比顯然不為1),則,得,因此,,故選C.【點(diǎn)睛】本題考查等比數(shù)列基本量計(jì)算,利用等比數(shù)列求和公式求出其公比,是解本題的關(guān)鍵,一般在求解等比數(shù)列問題時(shí),有如下兩種方法:(1)基本量法:利用首項(xiàng)和公比列方程組解出這兩個(gè)基本量,然后利用等比數(shù)列的通項(xiàng)公式或求和公式來進(jìn)行計(jì)算;(2)性質(zhì)法:利用等比數(shù)列下標(biāo)有關(guān)的性質(zhì)進(jìn)行轉(zhuǎn)化,能起到簡化計(jì)算的作用.4、A【解析】

根據(jù)三棱錐的結(jié)構(gòu)特征和線面位置關(guān)系,得到中點(diǎn)為三棱錐的外接球的球心,求得球的半徑,利用球的體積公式,即可求解.【詳解】由題意,如圖所示,因?yàn)椋覟橹苯侨切?,所以,又因?yàn)槠矫?,所以,則平面,得.又由,所以中點(diǎn)為三棱錐的外接球的球心,則外接球的半徑.所以該球的體積是.故選A.【點(diǎn)睛】本題考查了有關(guān)球的組合體問題,以及三棱錐的體積的求法,解答時(shí)要認(rèn)真審題,注意球的性質(zhì)的合理運(yùn)用,求解球的組合體問題常用方法有(1)三條棱兩兩互相垂直時(shí),可恢復(fù)為長方體,利用長方體的體對(duì)角線為外接球的直徑,求出球的半徑;(2)利用球的截面的性質(zhì),根據(jù)勾股定理列出方程求解球的半徑.5、C【解析】

利用線面、面面之間的位置關(guān)系逐一判斷即可.【詳解】對(duì)于A,若,,則平行、相交、異面均有可能,故A不正確;對(duì)于B,若,,,則垂直、平行均有可能,故B不正確;對(duì)于C,若,,,根據(jù)線面垂直的定義可知內(nèi)的兩條相交線線與內(nèi)的兩條相交線平行,故,故C正確;對(duì)于D,由C可知,D不正確;故選:C【點(diǎn)睛】本題考查了由線面平行、線面垂直判斷線面、線線、面面之間的位置關(guān)系,屬于基礎(chǔ)題.6、A【解析】

代入即可得結(jié)果.【詳解】解:由已知,故選:A.【點(diǎn)睛】本題考查數(shù)列的項(xiàng)和項(xiàng)數(shù)之間的關(guān)系,是基礎(chǔ)題.7、C【解析】由題意,PA⊥面ABC,則為直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因?yàn)闉橹苯侨切危?jīng)分析只能,故,三棱錐的外接球的圓心為PC的中點(diǎn),所以則球的表面積為.故選C.8、D【解析】

求出斜率,根據(jù)斜率與傾斜角關(guān)系,即可求解.【詳解】化為,直線的斜率為,傾斜角為.故選:D.【點(diǎn)睛】本題考查直線方程一般式化為斜截式,求直線的斜率、傾斜角,屬于基礎(chǔ)題.9、D【解析】

首先判斷函數(shù)的奇偶性,排除選項(xiàng),再根據(jù)特殊區(qū)間時(shí),判斷選項(xiàng).【詳解】是偶函數(shù),是奇函數(shù),是奇函數(shù),函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,故排除A,B,當(dāng)時(shí),,,排除C.故選D.【點(diǎn)睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖象,一般從函數(shù)的定義域確定函數(shù)的位置,從函數(shù)的值域確定圖象的上下位置,也可判斷函數(shù)的奇偶性,排除圖象,或是根據(jù)函數(shù)的單調(diào)性,特征值,以及函數(shù)值的正負(fù),是否有極值點(diǎn)等函數(shù)性質(zhì)判斷選項(xiàng).10、C【解析】

,由此判斷①的正誤,根據(jù)判斷②的正誤,由求出的單調(diào)遞增區(qū)間,即可判斷③的正誤,結(jié)合的圖象判斷④的正誤.【詳解】因?yàn)?,故①正確因?yàn)椋盛诓徽_由得所以在區(qū)間上單調(diào)遞增,故③正確若實(shí)數(shù)m使得方程在上恰好有三個(gè)實(shí)數(shù)解,結(jié)合的圖象知,必有此時(shí),另一解為即,,滿足,故④正確綜上可知:命題正確的是①③④故選:C【點(diǎn)睛】本題考查的是三角函數(shù)的圖象及其性質(zhì),解決這類問題時(shí)首先應(yīng)把函數(shù)化成三角函數(shù)基本型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)即可得出,進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算即可求出x.【詳解】∵;∴;∴x=﹣1;故答案為﹣1.【點(diǎn)睛】考查向量垂直的充要條件,以及向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.12、【解析】

求出,,,當(dāng),遞減,遞增,分別討論,,是否存在“谷值”,注意運(yùn)用單調(diào)性即可.【詳解】解:當(dāng)時(shí),有,,當(dāng),遞減,遞增,且.若時(shí),有,則不存在“谷值”;若時(shí),,則不存在“谷值”;若時(shí),①,則不存在"谷值";②,則不存在"谷值";③,存在"谷值"且為.綜上所述,的取值范圍是故答案為:【點(diǎn)睛】本題考查新定義及運(yùn)用,考查數(shù)列的單調(diào)性和運(yùn)用,正確理解新定義是迅速解題的關(guān)鍵,是一道中檔題.13、2【解析】

由向量的模長公式,計(jì)算得到答案.【詳解】因?yàn)橄蛄浚?,所以答案?【點(diǎn)睛】本題考查向量的模長公式,屬于簡單題.14、1.98.【解析】

本題考查通過統(tǒng)計(jì)數(shù)據(jù)進(jìn)行概率的估計(jì),采取估算法,利用概率思想解題.【詳解】由題意得,經(jīng)停該高鐵站的列車正點(diǎn)數(shù)約為,其中高鐵個(gè)數(shù)為11+21+11=41,所以該站所有高鐵平均正點(diǎn)率約為.【點(diǎn)睛】本題考點(diǎn)為概率統(tǒng)計(jì),滲透了數(shù)據(jù)處理和數(shù)學(xué)運(yùn)算素養(yǎng).側(cè)重統(tǒng)計(jì)數(shù)據(jù)的概率估算,難度不大.易忽視概率的估算值不是精確值而失誤,根據(jù)分類抽樣的統(tǒng)計(jì)數(shù)據(jù),估算出正點(diǎn)列車數(shù)量與列車總數(shù)的比值.15、【解析】

根據(jù)兩圓在點(diǎn)處的切線互相垂直,得出是直角三角形,求出,然后兩圓相減求出公共弦的直線方程,運(yùn)用點(diǎn)到直線的距離公式求出圓心到公共弦的距離,進(jìn)而求出公共弦長.【詳解】由題意,圓圓心坐標(biāo),半徑,圓圓心坐標(biāo),半徑,因?yàn)閮蓤A相交于點(diǎn),且兩圓在點(diǎn)處的切線互相垂直,所以是直角三角形,,所以,由兩點(diǎn)間距離公式,,所以,解得,所以圓:,兩圓方程相減,得,即,所以公共弦:,圓心到公共弦的距離,故公共弦長故答案為:【點(diǎn)睛】本題主要考查兩圓公共弦的方程、圓弦長的求法和點(diǎn)到直線的距離公式,考查學(xué)生的分析能力,屬于基礎(chǔ)題.16、4【解析】

由約束條件得到可行域,取最小值時(shí)在軸截距最小,通過直線平移可知過時(shí),取最小值;求出點(diǎn)坐標(biāo),代入構(gòu)造出方程求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:取最小值時(shí),即在軸截距最小平移直線可知,當(dāng)過點(diǎn)時(shí),在軸截距最小由得:,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查現(xiàn)行規(guī)劃中根據(jù)最值求解參數(shù)的問題,關(guān)鍵是能夠明確最值取得的點(diǎn),屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】

(1)由函數(shù)為偶函數(shù),可得,故,由此可得的值.(2)化簡函數(shù),求出,化簡,由題意可知:,由此可得的取值范圍.(3)由條件得,再由,,可得.由的圖象關(guān)于點(diǎn),對(duì)稱求得,可得.再由的圖象關(guān)于直線成軸對(duì)稱,所以,可得,,由此求得滿足的條件.【詳解】解:(1)因?yàn)楹瘮?shù)為偶函數(shù),所以,得對(duì)恒成立,即,所以.(2),即,,由題意可知:得,∴.(3)又∵,,,不妨設(shè),,則,其中,由函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱,在處取得最小值得,即,故.【點(diǎn)睛】本題主要考查三角函數(shù)的奇偶性,單調(diào)性和對(duì)稱性的綜合應(yīng)用,屬于中檔題.18、(Ⅰ).=.(Ⅱ).【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進(jìn)而得到,由轉(zhuǎn)化為,求出,進(jìn)而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:在中,因?yàn)?,故由,可?由已知及余弦定理,有,所以.由正弦定理,得.所以,的值為,的值為.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考點(diǎn):正弦定理、余弦定理、解三角形【名師點(diǎn)睛】利用正弦定理進(jìn)行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點(diǎn),經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.19、(1),;(2),,.【解析】

(1)由,直接利用對(duì)稱中心和增區(qū)間公式得到答案.(2)根據(jù)變換得到函數(shù)的解析式為,再求值域和最小正周期.【詳解】由題意知:(1)由得對(duì)稱中心,由,得:單調(diào)增區(qū)間為,(2)所求解析式為:0值域:最小正周期:.【點(diǎn)睛】本題考查了三角函數(shù)的對(duì)稱中心,單調(diào)區(qū)間,函數(shù)變換,周期,值域,綜合性強(qiáng),意在考查學(xué)生對(duì)于三角函數(shù)公式和性質(zhì)的靈活運(yùn)用.20、(1)(2)見解析【解析】

(1)先利用時(shí),由求出的值,再令,由,得出,將兩式相減得出數(shù)列為等比數(shù)列,得出該數(shù)列的公比,可求出;(2)利用對(duì)數(shù)的運(yùn)算性質(zhì)以及等差數(shù)列的求和公式得出,并將裂項(xiàng)為,利用裂項(xiàng)法求出,于此可證明出所證不等式成立.【詳解】(1)由題可得.當(dāng)時(shí),,即.由題設(shè),,兩式相減得.所以是以2為首項(xiàng),2為公比的等比數(shù)列,故.(2),則,所以因?yàn)?,所以,即證.【點(diǎn)睛】本題考查利用求通項(xiàng),以及裂項(xiàng)法求和,利用求通項(xiàng)的原則是,另外在利用裂項(xiàng)法求和時(shí)要注意裂項(xiàng)法求和法所適用數(shù)列通項(xiàng)的基本類型,熟悉裂項(xiàng)法求和的基本步驟,都是??碱}型,屬于中等題.21、(1)選擇C;(2)第4或第5年.【解析】

(1)根據(jù)已知求出三種樹木六年末的高度,判斷得解;(2)設(shè)為第年內(nèi)樹木生長的高度,先求出,設(shè),則,.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論