版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黃岡中學(xué)2024屆數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.下列表達(dá)式正確的是()①,②若,則③若,則④若,則A.①② B.②③ C.①③ D.③④2.方程表示的曲線是()A.一個(gè)圓 B.兩個(gè)圓 C.半個(gè)圓 D.兩個(gè)半圓3.已知圓x2+y2+2x-6y+5a=0關(guān)于直線y=x+b成軸對(duì)稱圖形,則A.(0,8) B.(-∞,8) C.(-∞,16)4.已知變量與正相關(guān),且由觀測(cè)數(shù)據(jù)算得樣本平均數(shù),,則由該觀測(cè)的數(shù)據(jù)算得的線性回歸方程可能是()A. B.C. D.5.直線(是參數(shù))被圓截得的弦長(zhǎng)等于()A. B. C. D.6.天氣預(yù)報(bào)說(shuō),在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機(jī)模擬試驗(yàn)的方法估計(jì)這三天中恰有兩天下雨的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個(gè)隨機(jī)數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機(jī)模擬試驗(yàn)產(chǎn)生了如下20組隨機(jī)數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計(jì),這三天中恰有兩天下雨的概率近似為A.0.35 B.0.25 C.0.20 D.0.157.已知函數(shù)和的定義域都是,則它們的圖像圍成的區(qū)域面積是()A. B. C. D.8.設(shè)等比數(shù)列滿足,,則()A.8 B.16 C.24 D.489.圖1是我國(guó)古代數(shù)學(xué)家趙爽創(chuàng)制的一幅“勾股圓方圖”(又稱“趙爽弦圖”),它是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形.受其啟發(fā),某同學(xué)設(shè)計(jì)了一個(gè)圖形,它是由三個(gè)全等的鈍角三角形與中間一個(gè)小正三角形拼成一個(gè)大正三角形,如圖2所示,若,,則線段的長(zhǎng)為()A.3 B.3.5 C.4 D.4.510.在等差數(shù)列中,已知,數(shù)列的前5項(xiàng)的和為,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在200m高的山頂上,測(cè)得山下一塔頂與塔底的俯角分別是30°,60°,則塔高為12.若,則______(用表示).13.在四面體中,平面ABC,,若四面體ABCD的外接球的表面積為,則四面體ABCD的體積為_______.14.在等差數(shù)列中,若,則的前13項(xiàng)之和等于______.15.函數(shù)的反函數(shù)是______.16.?dāng)?shù)列中,,以后各項(xiàng)由公式給出,則等于_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知.(1)設(shè),求滿足的實(shí)數(shù)的值;(2)若為上的奇函數(shù),試求函數(shù)的反函數(shù).18.已知三棱錐中,是邊長(zhǎng)為的正三角形,;(1)證明:平面平面;(2)設(shè)為棱的中點(diǎn),求二面角的余弦值.19.在區(qū)間內(nèi)隨機(jī)取兩個(gè)數(shù),則關(guān)于的一元二次方程有實(shí)數(shù)根的概率為__________.20.某服裝店為慶祝開業(yè)“三周年”,舉行為期六天的促銷活動(dòng),規(guī)定消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開展,第五天該服裝店經(jīng)理對(duì)前五天中參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:1234546102322(1)若與具有線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(2)預(yù)測(cè)第六天的參加抽獎(jiǎng)活動(dòng)的人數(shù)(按四舍五入取到整數(shù)).參考公式與參考數(shù)據(jù):.21.已知集合,,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
根據(jù)基本不等式、不等式的性質(zhì)即可【詳解】對(duì)于①,.當(dāng),即時(shí)取,而,.即①不成立。對(duì)于②若,則,若,顯然不成立。對(duì)于③若,則,則正確。對(duì)于④若,則,則,正確。所以選擇D【點(diǎn)睛】本題主要考查了基本不等式以及不等式的性質(zhì),基本不等式一定要滿足一正二定三相等。屬于中等題。2、D【解析】原方程即即或故原方程表示兩個(gè)半圓.3、D【解析】
根據(jù)圓關(guān)于直線成軸對(duì)稱圖形得b=4,根據(jù)二元二次方程表示圓得a<2,再根據(jù)指數(shù)函數(shù)的單調(diào)性得4a【詳解】解:∵圓x2+y∴圓心(-1,3)在直線∴3=-1+b,解得b=4又圓的半徑r=4+36-20a2>0b故選:D.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,屬中檔題.4、A【解析】試題分析:因?yàn)榕c正相關(guān),排除選項(xiàng)C、D,又因?yàn)榫€性回歸方程恒過(guò)樣本點(diǎn)的中心,故排除選項(xiàng)B;故選A.考點(diǎn):線性回歸直線.5、D【解析】
先消參數(shù)得直線普通方程,再根據(jù)垂徑定理得弦長(zhǎng).【詳解】直線(是參數(shù)),消去參數(shù)化為普通方程:.圓心到直線的距離,∴直線被圓截得的弦長(zhǎng).故選D.【點(diǎn)睛】本題考查參數(shù)方程化普通方程以及垂徑定理,考查基本分析求解能力,屬基礎(chǔ)題.6、B【解析】解:由題意知模擬三天中恰有兩天下雨的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù),在20組隨機(jī)數(shù)中表示三天中恰有兩天下雨的有:191、271、932、812、393,共5組隨機(jī)數(shù),∴所求概率為=0.1.故選B7、C【解析】
由可得,所以的圖像是以原點(diǎn)為圓心,為半徑的圓的上半部分;再結(jié)合圖形求解.【詳解】由可得,作出兩個(gè)函數(shù)的圖像如下:則區(qū)域①的面積等于區(qū)域②的面積,所以他們的圖像圍成的區(qū)域面積為半圓的面積,即.故選C.【點(diǎn)睛】本題考查函數(shù)圖形的性質(zhì),關(guān)鍵在于的識(shí)別.8、A【解析】
利用等比數(shù)列的通項(xiàng)公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則,解得所以.故選:A【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式,需熟記公式,屬于基礎(chǔ)題.9、A【解析】
設(shè),可得,求得,在中,運(yùn)用余弦定理,解方程可得所求值.【詳解】設(shè),可得,且,在中,可得,即為,化為,解得舍去),故選.【點(diǎn)睛】本題考查三角形的余弦定理,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.10、C【解析】
由,可求出,結(jié)合,可求出及.【詳解】設(shè)數(shù)列的前項(xiàng)和為,公差為,因?yàn)?,所以,則,故.故選C.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和,考查了等差數(shù)列的通項(xiàng)公式,考查了計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
試題分析:根據(jù)題意,設(shè)塔高為x,則可知,a表示的為塔與山之間的距離,可以解得塔高為.考點(diǎn):解三角形的運(yùn)用點(diǎn)評(píng):主要是考查了解三角形中的余弦定理和正弦定理的運(yùn)用,屬于中檔題.12、【解析】
直接利用誘導(dǎo)公式化簡(jiǎn)求解即可.【詳解】解:,則,故答案為:.【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)化簡(jiǎn)求值,考查計(jì)算能力,屬于基礎(chǔ)題.13、【解析】
設(shè),再根據(jù)外接球的直徑與和底面外接圓的一條直徑構(gòu)成直角三角形求解進(jìn)而求得體積即可.【詳解】設(shè),底面外接圓直徑為.易得底面是邊長(zhǎng)為3的等邊三角形.則由正弦定理得.又外接球的直徑與和底面外接圓的一條直徑構(gòu)成直角三角形有.又外接球的表面積為,即.解得.故四面體體積為.故答案為:【點(diǎn)睛】本題主要考查了側(cè)棱垂直于底面的四面體的外接球問題.需要根據(jù)題意建立底面三角形外接圓的直徑和三棱錐的高與外接球直徑的關(guān)系再求解.屬于中檔題.14、【解析】
根據(jù)題意,以及等差數(shù)列的性質(zhì),先得到,再由等差數(shù)列的求和公式,即可求出結(jié)果.【詳解】因?yàn)槭堑炔顢?shù)列,,所以,即,記前項(xiàng)和為,則.故答案為:【點(diǎn)睛】本題主要考查等差數(shù)列前項(xiàng)和的基本量的運(yùn)算,熟記等差數(shù)列的性質(zhì)以及求和公式即可,屬于基礎(chǔ)題型.15、,【解析】
求出函數(shù)的值域作為其反函數(shù)的定義域,再由求出其反函數(shù)的解析式,綜合可得出答案.【詳解】,則,由可得,,因此,函數(shù)的反函數(shù)是,.故答案為:,.【點(diǎn)睛】本題考查反三角函數(shù)的求解,解題時(shí)注意求出原函數(shù)的值域作為其反函數(shù)的定義域,考查計(jì)算能力,屬于中等題.16、【解析】
可以利用前項(xiàng)的積與前項(xiàng)的積的關(guān)系,分別求得第三項(xiàng)和第五項(xiàng),即可求解,得到答案.【詳解】由題意知,數(shù)列中,,且,則當(dāng)時(shí),;當(dāng)時(shí),,則,當(dāng)時(shí),;當(dāng)時(shí),,則,所以.【點(diǎn)睛】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,其中解答中熟練的應(yīng)用遞推關(guān)系式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)把代入函數(shù)解析式,代入方程即可求解.(2)由函數(shù)奇偶性得,然后求得的解析式,分段求解反函數(shù)即可.【詳解】(1)當(dāng)時(shí),,由,得,即,解得.(2)為上的奇函數(shù),,則.,由,,得,;由,,得,.函數(shù)的反函數(shù)為.【點(diǎn)睛】本題主要考查了函數(shù)的解析式及求法,考查了反函數(shù)的求法,屬于中檔題.18、(1)見解析(2)【解析】
(1)由題意結(jié)合正弦定理可得,據(jù)此可證得平面,從而可得題中的結(jié)論;(2)在平面中,過(guò)點(diǎn)作,以所在的直線分別為軸建立空間直角坐標(biāo)系,由空間向量的結(jié)論求得半平面的法向量,然后求解二面角的余弦值即可.【詳解】(1)證明:在中,,,,由余弦定理可得,,,,平面,平面,平面平面.(2)在平面中,過(guò)點(diǎn)作,以所在的直線分別為軸建立空間直角坐標(biāo)系,則設(shè)平面的一個(gè)法向量為則解得,,即設(shè)平面的一個(gè)法向量為則解得,,即由圖可知二面角為銳角,所以二面角的余弦值為.【點(diǎn)睛】本題主要考查面面垂直的證明方法,空間向量的應(yīng)用等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.19、【解析】試題分析:解:在平面直角坐標(biāo)系中,以軸和軸分別表示的值,因?yàn)閙、n是中任意取的兩個(gè)數(shù),所以點(diǎn)與右圖中正方形內(nèi)的點(diǎn)一一對(duì)應(yīng),即正方形內(nèi)的所有點(diǎn)構(gòu)成全部試驗(yàn)結(jié)果的區(qū)域.設(shè)事件表示方程有實(shí)根,則事件,所對(duì)應(yīng)的區(qū)域?yàn)閳D中的陰影部分,且陰影部分的面積為.故由幾何概型公式得,即關(guān)于的一元二次方程有實(shí)根的概率為.考點(diǎn):本題主要考查幾何概型概率的計(jì)算.點(diǎn)評(píng):幾何概型概率的計(jì)算,關(guān)鍵是明確基本事件空間及發(fā)生事件的幾何度量,有面積、體積、角度數(shù)、線段長(zhǎng)度等.本題涉及到了線性規(guī)劃問題中平面區(qū)域.20、(1)(2)預(yù)測(cè)第六天的參加抽獎(jiǎng)活動(dòng)的人數(shù)為29.【解析】
(1)根據(jù)表中的數(shù)據(jù),利用公式,分別求得的值,即可得到回歸直線方程;(2)將代入回歸直線方程,求得,即可作出判斷,得到結(jié)論.【詳解】(1)根據(jù)表中的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第一講《小企業(yè)會(huì)計(jì)制度》培訓(xùn)
- 2024高中地理第四章工業(yè)地域的形成與發(fā)展第1節(jié)工業(yè)的區(qū)位選擇練習(xí)含解析新人教版必修2
- 2024高中生物專題5DNA和蛋白質(zhì)技術(shù)課題2多聚酶鏈?zhǔn)椒磻?yīng)擴(kuò)增DNA片段課堂演練含解析新人教版選修1
- 2024高中語(yǔ)文第三課神奇的漢字第1節(jié)字之初本為畫-漢字的起源練習(xí)含解析新人教版選修語(yǔ)言文字應(yīng)用
- 2024高考地理一輪復(fù)習(xí)第十八單元區(qū)際聯(lián)系與區(qū)域協(xié)調(diào)發(fā)展練習(xí)含解析
- 2024高考化學(xué)二輪復(fù)習(xí)選擇題專項(xiàng)練二含解析
- (4篇)2024大學(xué)社團(tuán)活動(dòng)工作總結(jié)
- 工程質(zhì)量檢測(cè)試驗(yàn)
- 保潔過(guò)程中的環(huán)境保護(hù)控制措施
- 海關(guān)報(bào)關(guān)實(shí)務(wù)4-第三章2知識(shí)課件
- 河南省鄭州外國(guó)語(yǔ)高中-【高二】【上期中】【把握現(xiàn)在 蓄力高三】家長(zhǎng)會(huì)【課件】
- 2025年中煤電力有限公司招聘筆試參考題庫(kù)含答案解析
- 2024-2025學(xué)年烏魯木齊市數(shù)學(xué)三上期末檢測(cè)試題含解析
- 企業(yè)內(nèi)部控制與財(cái)務(wù)風(fēng)險(xiǎn)防范
- 2025年初級(jí)經(jīng)濟(jì)師之初級(jí)經(jīng)濟(jì)師基礎(chǔ)知識(shí)考試題庫(kù)及完整答案【全優(yōu)】
- 建設(shè)項(xiàng)目施工現(xiàn)場(chǎng)春節(jié)放假期間的安全管理方案
- 胃潴留護(hù)理查房
- 污水處理廠運(yùn)營(yíng)方案計(jì)劃
- 眼科慢病管理新思路
- 劉先生家庭投資理財(cái)規(guī)劃方案設(shè)計(jì)
- 寵物養(yǎng)護(hù)與經(jīng)營(yíng)-大學(xué)專業(yè)介紹
評(píng)論
0/150
提交評(píng)論