版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第01講不等式的性質(zhì)、解集1、理解實(shí)數(shù)的大小與比較,會用數(shù)軸上的點(diǎn)表示實(shí)數(shù)并比較大??;2、理解不等式的性質(zhì),并學(xué)會應(yīng)用性質(zhì)比較大?。?、理解集合的概念,掌握集合的表示方法,并學(xué)會表示不等式的解集。知識點(diǎn)一:不等式的定義(1)不等式:用不等號表示不相等關(guān)系的式子,叫做不等式,例如:等都是不等式.(2)常見的不等號有5種:“≠”、“>”、“<”、“≥”、“≤”.知識點(diǎn)二:不等式的基本性質(zhì)基本性質(zhì)1:不等式兩邊都加上(或減去)同一個(gè)數(shù)(或式子),不等號方向不變.如果,那么如果,那么基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號的方向不變.如果,并且,那么(或)如果,并且,那么(或)基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號的方向改變.如果,并且,那么(或)如果,并且,那么(或)不等式的互逆性:如果,那么;如果,那么.不等式的傳遞性:如果,,那么.易錯(cuò)點(diǎn):①不等式兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號的方向改變.②在計(jì)算的時(shí)候符號方向容易忘記改變.知識點(diǎn)三:不等式的解集不等式的解集①概念:一般地,一個(gè)含有未知數(shù)的不等式的所有的解,組成這個(gè)不等式的解集,求不等式的解集的過程叫做解不等式。②用數(shù)軸表示不等式解集解集x>?4在數(shù)軸上表示為解集x≥?4在數(shù)軸上表示為解集x<4在數(shù)軸上表示為解集x≤在數(shù)軸上表示為【題型1:不等式的定義】【典例1】(2022春?惠濟(jì)區(qū)校級期中)下面給出了5個(gè)式子中,①﹣2x<0,②2x+3>0,③x=2,④2x+3,⑤b﹣5≤7是不等式的有()A.2 B.3 C.4 D.5【答案】B【解答】解:①﹣2x<0,②2x+3>0,⑤b﹣5≤7都運(yùn)用不等號表示不相等的關(guān)系式,屬于不等式.③x=2是等式,④2x+3是代數(shù)式.故選:B.【變式1-1】(2022春?成華區(qū)校級期中)以下數(shù)學(xué)表達(dá)式:①4x+3y>0;②x=3;③x2+xy+y2;④x≠5.其中不等式有()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)【答案】C【解答】解:4x+3y>0和x≠5是不等式,x=3和x2+xy+y2不是不等式,即不等式有2個(gè),故選:C.【變式1-2】(2022春?惠州期末)在下列數(shù)學(xué)表達(dá)式:①﹣2<0,②2y﹣5>1,③m=1,④x2﹣x,⑤x≠﹣2,⑥x+1<2x﹣1中,是不等式的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)【答案】C【解答】解:不等式是指不等號來連接不等關(guān)系的式子,如<,>,≠,所以不等式有:①②⑤⑥,等式有:③.故選:C【典例2】(2022春?昭平縣期末)據(jù)深圳氣象臺“天氣預(yù)報(bào)”報(bào)道,今天深圳的最低氣溫是25℃,最高氣溫是32℃,則今天氣溫t(℃)的取值范圍是()A.t<32 B.t>25 C.t=25 D.25≤t≤32【答案】D【解答】解:根據(jù)今天的最低氣溫是25℃可得:t≥25,根據(jù)最高氣溫是32℃可得:t≤32,則氣溫范圍是:25≤t≤32,故選:D.【變式2-1】(2022春?雁塔區(qū)校級期中)今據(jù)天氣預(yù)報(bào),2022年4月1日高新區(qū)最高氣溫20℃,最低氣溫是8℃,則當(dāng)天我區(qū)氣溫t(℃)的變化范圍是()A.t>8 B.t≤20 C.8<t<20 D.8≤t≤20【答案】D【解答】解:若4月1日高新區(qū)最高氣溫是20℃,最低氣溫8℃,則4月1日高新區(qū)的氣溫t(℃)的變化范圍是8≤t≤20.故選:D.【變式2-2】(2022春?倉山區(qū)校級期中)2020年,一直活躍在全球公眾視線中的新冠疫苗,成為人類對抗新冠疫情的“關(guān)鍵先生”.然而,研發(fā)只是邁出了第一步,疫苗運(yùn)輸?shù)牡谝魂P(guān)考驗(yàn),在于溫度.作為生物制品,疫苗對溫度極其敏感.一般來說,疫苗冷鏈按照溫度的不同,有如下分類:類型深度冷鏈凍鏈冷藏鏈溫度(t℃)t≤﹣70﹣70<t≤﹣202≤t≤8常見疫苗埃博拉疫苗水痘、帶狀皰疹疫苗流感疫苗我國研制的新型冠狀病毒滅活疫苗,冷鏈運(yùn)輸和儲存需要在2℃﹣8℃范圍內(nèi),屬于以下哪種冷鏈運(yùn)輸()A.深度冷鏈 B.凍鏈 C.冷藏鏈 D.普通運(yùn)輸【答案】C【解答】解:根據(jù)表中t的取值范圍可得,冷鏈運(yùn)輸和儲存需要在2℃﹣8℃范圍內(nèi),屬于冷藏鏈運(yùn)輸.故選:C.【題型2:不等式的性質(zhì)】【典例3】(2023春?薛城區(qū)月考)已知a<b,下列式子不一定成立的是()A.a(chǎn)﹣1<b﹣1 B.﹣2a>﹣2b C.2a+1<2b+1 D.m2a>m2b【答案】D【解答】解:A、不等式兩邊同時(shí)減去一個(gè)相同的數(shù),不等號的方向不變,故A成立,不符合題意;B、不等式兩邊同時(shí)乘以一個(gè)相同的負(fù)數(shù),不等號的方向改變,故B成立,不符合題意;C、∵a<b,∴2a<2b,∴2a+1<2b+1;故C成立,不符合題意;D、∵a<b,m2≥0,∴m2a≤m2b,故D不成立,符合題意;故選:D.【變式3-1】(2023春?普寧市月考)已知a>b,則下列各式中一定成立的是()A.a(chǎn)﹣b<0 B. C.a(chǎn)c2>bc2 D.2a﹣1<2b﹣1【答案】B【解答】解:∵a>b,∴a﹣b>0,故A不符合題意;∵a>b,∴,故B符合題意;當(dāng)c=0時(shí),ac2=bc2,故C不符合題意;∵a>b,∴2a>2b,∴2a﹣1>2b﹣1,故D不符合題意,故選:B.【變式3-2】(2022秋?朝陽區(qū)校級期末)若x>y,則下列式子中,不正確的是()A.﹣3x>﹣3y B.x+3>y+3 C.x﹣3>y﹣3 D.3x>3y【答案】A【解答】解:∵x>y,∴﹣3x<﹣3y,故選項(xiàng)A不正確;∵x>y,∴x+3>y+3,故選項(xiàng)B正確;∵x>y,∴x﹣3>y﹣3,故選項(xiàng)C正確;∵x>y,∴3x>3y,故選項(xiàng)D正確;故選:A.【變式3-3】(2022秋?市中區(qū)校級期末)若m>n,則下列各式中錯(cuò)誤的是()A.m+3>n+3 B.﹣6m>﹣6n C.5m>5n D.【答案】B【解答】解:A.不等式m>n的兩邊都加上3,不等號的方向不變,原變形正確,故本選項(xiàng)不符合題意;B.不等式m>的兩邊都乘以﹣3,不等號的方向改變,原變形錯(cuò)誤,故本選項(xiàng)符合題意;C.不等式m>n的兩邊都乘5,不等號的方向不變,原變形正確,故本選項(xiàng)不符合題意;D.不等式m>n的兩邊都除以2,不等號的方向不變,原變形正確,故本選項(xiàng)不符合題意.故選:B.【典例4】(2023春?譙城區(qū)校級月考)如果a﹣b>0,那么下列不等式成立的是()A.a(chǎn)+b<0 B.a(chǎn)+1>b+1 C.a(chǎn)<b D.﹣a>﹣b【答案】B【解答】解:∵a﹣b>0,∴a>b,A、∵a﹣b>0,∴不能判斷a+b<0,故A不符合題意;B、∵a﹣b>0,∴a>b,∴a+1>b+1,故B符合題意;C、∵a﹣b>0,∴a>b,故C不符合題意;D、∵a﹣b>0,∴a>b,∴﹣a<﹣b,故D不符合題意.故選:B.【變式4-1】(2023?東勝區(qū)模擬)若不等式﹣2x<1,兩邊同時(shí)除以﹣2,結(jié)果正確的是()A. B. C.x>﹣2 D.x<2【答案】A【解答】解:若不等式﹣2x<1,兩邊同時(shí)除以﹣2,結(jié)果正確的是x.故選:A.【變式4-2】(2023春?秦皇島月考)如果x﹣1<y﹣1,那么下列不等式不正確的是()A.﹣2x<﹣2y B. C.2﹣x>2﹣y D.x+1<y+2【答案】A【解答】解:A、∵x﹣1<y﹣1,∴x<y,∴﹣2x>﹣2y,故A符合題意;B、∵x﹣1<y﹣1,∴x<y,∴,故B不符合題意;C、∵x﹣1<y﹣1,∴x<y,∴﹣x>﹣y,∴2﹣x>2﹣y,故C不符合題意;D、∵x﹣1<y﹣1,∴x<y,∴x+1<y+1,∴x+1<y+2,故D不符合題意;故選:A【題型3:不等式的解集】【典例5】(2022秋?云陽縣期末)不等式x>3的解集在數(shù)軸上表示正確的是()A. B. C. D.【答案】B【解答】解:不等式x>3的解集在數(shù)軸上表示為,故選:B.【變式5-1】(2022秋?零陵區(qū)期末)不等式x>4的解集在數(shù)軸上表示正確的是()A. B. C. D.【答案】D【解答】解:不等式x>4的解集在數(shù)軸上表示,故選:D.【變式5-2】(2022秋?長興縣期末)如圖所示,在數(shù)軸上表示不等式正確的是()A.x<1 B.x≤1 C.x>1 D.x≥1【答案】A【解答】解:由題意,得:x<1,故選:A.【變式5-3】(2022?榮昌區(qū)自主招生)不等式x≤﹣3的解集在數(shù)軸上表示正確的是()A. B. C. D.【答案】D【解答】解:將不等式x≤﹣3的解集在數(shù)軸上表示如下:故選:D.【典例6】(2022春?汝南縣期末)不等式組的解集在數(shù)軸上可以表示為()A. B. C. D.【答案】D【解答】解:不等式組的解集在數(shù)軸上可以表示為:故選:D.【變式6-1】(2022春?靈臺縣期末)不等式組的解集在數(shù)軸上表示正確的是()A. B. C. D.【答案】C【解答】解:解不等式組,得﹣1<x≤1,在數(shù)軸上表示為:故選:C.【變式6-2】(2022春?安次區(qū)校級期末)如圖,數(shù)軸上表示的解集為()A.x>﹣3 B.x≤2 C.﹣3<x≤2 D.﹣3≤x<2【答案】C【解答】解:由數(shù)軸得:,∴﹣3<x≤2.故選:C.【典例7】(2023?佛山模擬)下列數(shù)是不等式5x﹣3<6的一個(gè)解的是()A. B.2 C. D.3【答案】A【解答】解:5x﹣3<6,5x<9,x<,∵,∴是不等式5x﹣3<6的一個(gè)解,故選:A.【變式7-1】(2022秋?婁星區(qū)期末)下列不等式的解集中,不包括﹣3的是()A.x≤﹣3 B.x≥﹣3 C.x≤﹣4 D.x>﹣4【答案】C【解答】解:根據(jù)題意,不包括﹣3即﹣3不在解集內(nèi),只有C選項(xiàng),x≤﹣3,不包括﹣3.故選:C.【變式7-2】(2022春?大田縣期中)若x=3.5是某不等式的解,則該不等式可以是()A.x>5 B.x>4 C.x<4 D.x<3【答案】C【解答】解:∵3.5<4,∴x=3.5滿足不等式x<4,故選:C.【變式7-3】(2022春?大田縣期中)若x=3.5是某不等式的解,則該不等式可以是()A.x>5 B.x>4 C.x<4 D.x<3【答案】C【解答】解:∵3.5<4,∴x=3.5滿足不等式x<4,故選:C.1.(2023?沈陽)不等式x≥1的解集在數(shù)軸上表示正確的是()A. B. C. D.【答案】B【解答】解:不等式x≥1的解集在數(shù)軸上表示為:故選:B.2.(2022?吉林)y與2的差不大于0,用不等式表示為()A.y﹣2>0 B.y﹣2<0 C.y﹣2≥0 D.y﹣2≤0【答案】D【解答】解:根據(jù)題意得:y﹣2≤0.故選:D.3.(2022?梧州)不等式組的解集在數(shù)軸上表示為()A. B. C. D.【答案】C【解答】解:所以不等式組的解集為﹣1<x<2,在數(shù)軸上表示為:,故選:C.4.(2022?六盤水)如圖是某橋洞的限高標(biāo)志,則能通過此橋洞的車輛高度是()A.6.5m B.6m C.5.5m D.4.5m【答案】D【解答】解:由標(biāo)志內(nèi)容可得,能通過此橋洞的車輛高度必須不能超過5m,故選:D.5.(2022?十堰)關(guān)于x的不等式組中的兩個(gè)不等式的解集如圖所示,則該不等式組的解集為0≤x<1.【答案】0≤x<1.【解答】解:該不等式組的解集為:0≤x<1.故答案為:0≤x<1.1.(2023春?石獅市校級期中)下列式子:①3>0;②4x+5>0;③x<3;④x2+x;⑤x=﹣4;⑥x+2>x+1,其中不等式有()A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)【答案】B【解答】解:①3>0,屬于不等式;②4x+5>0,屬于不等式;③x<3,屬于不等式;④x2+x屬于代數(shù)式,不合題意;⑤x=﹣4屬于方程,不合題意;⑥x+2>x+1,屬于不等式.故選:B.2.(2023?鹽田區(qū)二模)不等式組的解集如圖所示,則該解集表示為()A.﹣1<x≤2 B.﹣1<x<2 C.﹣1≤x<2 D.﹣1≤x≤2【答案】A【解答】解:由數(shù)軸上表示的不等式的解集,得﹣1<x≤2,故選:A.3.(2023春?西鄉(xiāng)塘區(qū)期末)不等式x≥1的解集在數(shù)軸上表示正確的是()A. B. C. D.【答案】D【解答】解:∵x≥1,∴1處是實(shí)心原點(diǎn),且折線向右.故選:D.4.(2023春?達(dá)川區(qū)校級期末)已知關(guān)于x的不等式(2﹣a)x>1的解集是x<;則a的取值范圍是()A.a(chǎn)>0 B.a(chǎn)<0 C.a(chǎn)<2 D.a(chǎn)>2【答案】D【解答】解:∵關(guān)于x的不等式(2﹣a)x>1的解集是x<,∴2﹣a<0,解得:a>2.故選:D.5.(2023?清遠(yuǎn)一模)小紅每分鐘踢毽子的次數(shù)正常范圍為少于80次,但不少于50次,用不等式表示為()A.50≤x≤80 B.50≤x<80 C.50<x<80 D.50<x≤80【答案】B【解答】解:小紅每分鐘踢毽子的次數(shù)正常范圍為少于80次,但不少于50次,用不等式表示為50≤x<80.故選:B.6.(2023?吉林二模)不等式2x+1<3的解集在數(shù)軸上表示為()A. B. C. D.【答案】D【解答】解:2x+1<3,解得x<1,在數(shù)軸上表示為:故選:D.7.(2023春?新都區(qū)期末)如圖,表示了某個(gè)不等式的解集,該解集中所含的整數(shù)解有()A.4個(gè) B.5個(gè) C.6個(gè) D.7個(gè)【答案】C【解答】解:由題意得:不等式的解集為:﹣2<x≤4,∴該不等式的整數(shù)解為﹣1,0,1,2,3,4,∴該解集中所含的整數(shù)解有6個(gè),故選:C.8.(2023春?福清市期末)數(shù)軸上表示不等式的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度財(cái)務(wù)信息系統(tǒng)集成合同3篇
- 2024石子深加工技術(shù)研發(fā)與應(yīng)用合同3篇
- 2024玩具樂園設(shè)備采購及租賃服務(wù)合同3篇
- 2024版影視作品版權(quán)轉(zhuǎn)讓與授權(quán)播放合同
- 2025年松樹造林項(xiàng)目采購合同3篇
- 二零二五版船舶光租及船舶安全管理體系合同3篇
- 二零二五年度安置房項(xiàng)目公共設(shè)施維護(hù)合同3篇
- 2025年度淋浴房綠色環(huán)保材料采購與安裝服務(wù)合同4篇
- 2025年度鋁材貿(mào)易結(jié)算與風(fēng)險(xiǎn)管理合同4篇
- 二零二五年度跨境電商進(jìn)口采購合同3篇
- 領(lǐng)導(dǎo)溝通的藝術(shù)
- 發(fā)生用藥錯(cuò)誤應(yīng)急預(yù)案
- 南潯至臨安公路(南潯至練市段)公路工程環(huán)境影響報(bào)告
- 綠色貸款培訓(xùn)課件
- 大學(xué)生預(yù)征對象登記表(樣表)
- 主管部門審核意見三篇
- 初中數(shù)學(xué)校本教材(完整版)
- 父母教育方式對幼兒社會性發(fā)展影響的研究
- 新課標(biāo)人教版數(shù)學(xué)三年級上冊第八單元《分?jǐn)?shù)的初步認(rèn)識》教材解讀
- (人教版2019)數(shù)學(xué)必修第一冊 第三章 函數(shù)的概念與性質(zhì) 復(fù)習(xí)課件
- 重慶市銅梁區(qū)2024屆數(shù)學(xué)八上期末檢測試題含解析
評論
0/150
提交評論