版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆潮州市高考數(shù)學(xué)一模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)的共軛復(fù)數(shù)記作,已知復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),復(fù)數(shù):滿足.則等于()A. B. C. D.2.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.543.的展開(kāi)式中的系數(shù)是()A.160 B.240 C.280 D.3204.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.5.已知點(diǎn),點(diǎn)在曲線上運(yùn)動(dòng),點(diǎn)為拋物線的焦點(diǎn),則的最小值為()A. B. C. D.46.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長(zhǎng)為1),則這個(gè)幾何體的體積是()A. B. C.16 D.327.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)8.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛(ài)好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個(gè)程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.10.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知集合,,,則的子集共有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)12.已知拋物線上的點(diǎn)到其焦點(diǎn)的距離比點(diǎn)到軸的距離大,則拋物線的標(biāo)準(zhǔn)方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐,,是邊長(zhǎng)為4的正三角形,,分別是、的中點(diǎn),為棱上一動(dòng)點(diǎn)(點(diǎn)除外),,若異面直線與所成的角為,且,則______.14.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB15.設(shè)f(x)=etx(t>0),過(guò)點(diǎn)P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點(diǎn)為Q,曲線C過(guò)點(diǎn)Q的切線交x軸于點(diǎn)R,若S(1,f(1)),則△PRS的面積的最小值是_____.16.在中,角,,所對(duì)的邊分別邊,且,設(shè)角的角平分線交于點(diǎn),則的值最小時(shí),___.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面,,分別是的中點(diǎn).(1)證明:平面平面;(2)已知點(diǎn)在棱上且,求直線與平面所成角的余弦值.18.(12分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,平面平面,點(diǎn)為棱的中點(diǎn).(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說(shuō)明理由;(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.19.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個(gè)特征向量.20.(12分)如圖所示,在四棱錐中,底面是棱長(zhǎng)為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)求二面角的正切值.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個(gè)極值點(diǎn),,且,證明.22.(10分)對(duì)于正整數(shù),如果個(gè)整數(shù)滿足,且,則稱數(shù)組為的一個(gè)“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為.(Ⅰ)寫出整數(shù)4的所有“正整數(shù)分拆”;(Ⅱ)對(duì)于給定的整數(shù),設(shè)是的一個(gè)“正整數(shù)分拆”,且,求的最大值;(Ⅲ)對(duì)所有的正整數(shù),證明:;并求出使得等號(hào)成立的的值.(注:對(duì)于的兩個(gè)“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時(shí),稱這兩個(gè)“正整數(shù)分拆”是相同的.)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)復(fù)數(shù)的幾何意義得出復(fù)數(shù),進(jìn)而得出,由得出可計(jì)算出,由此可計(jì)算出.【詳解】由于復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),,則,,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考查了復(fù)數(shù)的坐標(biāo)表示、共軛復(fù)數(shù)以及復(fù)數(shù)的除法,考查計(jì)算能力,屬于基礎(chǔ)題.2、C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問(wèn)題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.3、C【解析】
首先把看作為一個(gè)整體,進(jìn)而利用二項(xiàng)展開(kāi)式求得的系數(shù),再求的展開(kāi)式中的系數(shù),二者相乘即可求解.【詳解】由二項(xiàng)展開(kāi)式的通項(xiàng)公式可得的第項(xiàng)為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式指定項(xiàng)的系數(shù),掌握二項(xiàng)展開(kāi)式的通項(xiàng)是解題的關(guān)鍵,屬于基礎(chǔ)題.4、B【解析】
由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑?,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點(diǎn)睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.5、D【解析】
如圖所示:過(guò)點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過(guò)點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了拋物線中距離的最值問(wèn)題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.6、A【解析】幾何體為一個(gè)三棱錐,高為4,底面為一個(gè)等腰直角三角形,直角邊長(zhǎng)為4,所以體積是,選A.7、D【解析】
求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補(bǔ)集的定義寫出運(yùn)算結(jié)果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點(diǎn)睛】該題考查的是有關(guān)集合的問(wèn)題,涉及到的知識(shí)點(diǎn)有函數(shù)的定義域,函數(shù)的值域,集合的運(yùn)算,屬于基礎(chǔ)題目.8、B【解析】
三視圖對(duì)應(yīng)的幾何體為如圖所示的幾何體,利用割補(bǔ)法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個(gè)圓柱截去上面一塊幾何體,把該幾何體補(bǔ)成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點(diǎn)睛】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時(shí)注意三視圖中的點(diǎn)線關(guān)系與幾何體中的點(diǎn)、線、面的對(duì)應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補(bǔ)法來(lái)求其體積,本題屬于基礎(chǔ)題.9、B【解析】
根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,考查計(jì)算能力,屬于基礎(chǔ)題.10、B【解析】
求出復(fù)數(shù),得出其對(duì)應(yīng)點(diǎn)的坐標(biāo),確定所在象限.【詳解】由題意,對(duì)應(yīng)點(diǎn)坐標(biāo)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.11、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計(jì)算,可得結(jié)果.【詳解】由題可知:,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),所以集合則所以的子集共有故選:B【點(diǎn)睛】本題考查集合的運(yùn)算以及集合子集個(gè)數(shù)的計(jì)算,當(dāng)集合中有元素時(shí),集合子集的個(gè)數(shù)為,真子集個(gè)數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.12、B【解析】
由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點(diǎn)M到其焦點(diǎn)F的距離比點(diǎn)M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標(biāo)準(zhǔn)方程為:y2=2x.故選B.【點(diǎn)睛】本題考查了拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
取的中點(diǎn),連接,,取的中點(diǎn),連接,,,直線與所成的角為,計(jì)算,,根據(jù)余弦定理計(jì)算得到答案?!驹斀狻咳〉闹悬c(diǎn),連接,,依題意可得,,所以平面,所以,因?yàn)?,分別、的中點(diǎn),所以,因?yàn)椋?,所以平面,故,故,故兩兩垂直。取的中點(diǎn),連接,,,因?yàn)?,所以直線與所成的角為,設(shè),則,,所以,化簡(jiǎn)得,解得,即.故答案為:.【點(diǎn)睛】本題考查了根據(jù)異面直線夾角求長(zhǎng)度,意在考查學(xué)生的計(jì)算能力和空間想象能力.14、-7【解析】
由題意得AB+【詳解】由題意得ABBC+∴AB+【點(diǎn)睛】突破本題的關(guān)鍵是抓住題中所給圖形的特點(diǎn),利用平面向量基本定理和向量的加減運(yùn)算,將所給向量統(tǒng)一用AC,15、【解析】
計(jì)算R(t,0),PR=t﹣(t),△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,根據(jù)函數(shù)的單調(diào)性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導(dǎo)數(shù)f′(x)=tetx,∴過(guò)Q的切線斜率k=t,設(shè)R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導(dǎo)數(shù)S′,由S′=0得t=1,當(dāng)t>1時(shí),S′>0,當(dāng)0<t<1時(shí),S′<0,∴t=1為極小值點(diǎn),也為最小值點(diǎn),∴△PRS的面積的最小值為.故答案為:.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求面積的最值問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.16、【解析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因?yàn)?,則,由余弦定理得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),又因?yàn)?,,所?故答案為:.【點(diǎn)睛】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】
(1)由平面幾何知識(shí)可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標(biāo)系,可求得面PAB的法向量,再運(yùn)用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點(diǎn),,故面,又且,故四邊形是平行四邊形,面,又,是面內(nèi)的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設(shè)是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【點(diǎn)睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.18、(1)見(jiàn)解析(2)【解析】
(Ⅰ)取的中點(diǎn),連結(jié)、,得到故且,進(jìn)而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進(jìn)而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點(diǎn),使得平面,點(diǎn)為棱的中點(diǎn).理由如下:取的中點(diǎn),連結(jié)、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),則由題意知,,,,,,設(shè)平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內(nèi)的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【點(diǎn)睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成,著重考查了分析問(wèn)題和解答問(wèn)題的能力.19、特征值為1,特征向量為.【解析】
設(shè)出矩陣M結(jié)合矩陣運(yùn)算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個(gè)特征向量.【詳解】設(shè)矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設(shè)特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個(gè)特征向量為.【點(diǎn)睛】本題主要考查矩陣的運(yùn)算及特征量的求解,矩陣運(yùn)算的關(guān)鍵是明確其運(yùn)算規(guī)則,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).20、(1)見(jiàn)證明;(2)【解析】
(1)取PD中點(diǎn)G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點(diǎn)O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點(diǎn)G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點(diǎn)O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點(diǎn)睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計(jì)算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計(jì)算.21、(1)若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減(2)證明見(jiàn)解析【解析】
(1),分,討論即可;(2)由題可得到,故只需證,,即,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育銷售合同范例
- 水壩清淤合同范例
- 武漢科技大學(xué)《工程材料與熱加工》2023-2024學(xué)年第一學(xué)期期末試卷
- 房產(chǎn)證過(guò)戶合同范例
- 火電廠合同范例
- 電器安裝勞務(wù)合同范例
- 清淤居間合同范例
- 財(cái)務(wù)公司股轉(zhuǎn)讓合同范例
- 武漢華夏理工學(xué)院《安全監(jiān)測(cè)技術(shù)及實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 武漢航海職業(yè)技術(shù)學(xué)院《播音作品賞析》2023-2024學(xué)年第一學(xué)期期末試卷
- 起世經(jīng)白話解-
- 新形勢(shì)下我國(guó)保險(xiǎn)市場(chǎng)營(yíng)銷的現(xiàn)狀、問(wèn)題及對(duì)策
- 完整版焦慮抑郁自評(píng)量表SASSDS
- ISO14001內(nèi)審檢查表
- 五金件成品檢驗(yàn)報(bào)告
- CDN基礎(chǔ)介紹PPT課件
- SPC八大控制圖自動(dòng)生成器v1.01
- 新形勢(shì)下加強(qiáng)市場(chǎng)監(jiān)管局檔案管理工作的策略
- 上海旅游資源基本類型及其旅游區(qū)布局特點(diǎn)(共5頁(yè))
- 六一湯_醫(yī)方類聚卷一○二引_御醫(yī)撮要_減法方劑樹(shù)
- 基于四層電梯的PLC控制系統(tǒng)設(shè)計(jì)83892727
評(píng)論
0/150
提交評(píng)論