人教版初中數(shù)學(xué)知識點總結(jié)2_第1頁
人教版初中數(shù)學(xué)知識點總結(jié)2_第2頁
人教版初中數(shù)學(xué)知識點總結(jié)2_第3頁
人教版初中數(shù)學(xué)知識點總結(jié)2_第4頁
人教版初中數(shù)學(xué)知識點總結(jié)2_第5頁
已閱讀5頁,還剩47頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

初中數(shù)學(xué)學(xué)問點總結(jié)

七年級數(shù)學(xué)(上)學(xué)問點

人教版七年級數(shù)學(xué)上冊主要包含了有理數(shù)、整式的加減、一元一次方程、

圖形的相識初步四個章節(jié)的內(nèi)容.

第一章有理數(shù)

一.學(xué)問框架

二.學(xué)問概念

1.有理數(shù):

⑴凡能寫成形式的數(shù)

都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整

數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).留意:。即不是正數(shù)

也不是負(fù)數(shù);-a不肯定是負(fù)數(shù)

+a也不肯定是正數(shù);?不是有理數(shù);

⑵有理數(shù)的分類:①②

2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

3.相反數(shù):

(1)只有符號不同的兩個數(shù)

我們說其中一個是另一個的相反數(shù);。的相反數(shù)還是0;

⑵相反數(shù)的和為。?a+b=0?a、b互為相反數(shù).

4.肯定值:

⑴正數(shù)的肯定值是其本身

0的肯定值是。

負(fù)數(shù)的肯定值是它的相反數(shù);留意:肯定值的意義是數(shù)軸上表示某數(shù)的點

分開原點的間隔;

(2)肯定值可表示為:或;肯定值的問題常常分類探討;

5.有理數(shù)比大?。?1)正數(shù)的肯定值越大

這個數(shù)越大;(2)正數(shù)恒久比。大

負(fù)數(shù)恒久比。??;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小

肯定值大的反而??;(5)數(shù)軸上的兩個數(shù)

右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>。

小數(shù)-大數(shù)<0.

6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);留意:。沒有倒數(shù);若aRO

那么的倒數(shù)是;若ab=l?a、b互為倒數(shù);若ab=-l?a、b互為負(fù)倒數(shù).

7.有理數(shù)加法法則:

(1)同號兩數(shù)相加

取一樣的符號

并把肯定值相加;

(2)異號兩數(shù)相加

取肯定值較大的符號

并用較大的肯定值減去較小的肯定值;

(3)一個數(shù)及。相加

仍得這個數(shù).

8.有理數(shù)加法的運算律:

(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).

9.有理數(shù)減法法則:減去一個數(shù)

等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

10有理數(shù)乘法法則:

(1)兩數(shù)相乘

同號為正

異號為負(fù)

并把肯定值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個數(shù)相乘

有一個因式為零

積為零;各個因式都不為零

積的符號由負(fù)因式的個數(shù)確定.

11有理數(shù)乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(be);

(3)乘法的安排律:a(b+c)=ab+ac.

12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);留意:零不能

做除數(shù)

13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次募都是正數(shù);

(2)負(fù)數(shù)的奇次塞是負(fù)數(shù);負(fù)數(shù)的偶次塞是正數(shù);留意:當(dāng)n為正奇數(shù)時:

(-a)n=-an或(a-b)n=-(b-a)n

當(dāng)n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.

14.乘方的定義:

(1)求一樣因式積的運算

叫做乘方;

(2)乘方中

一樣的因式叫做底數(shù)

一樣因式的個數(shù)叫做指數(shù)

乘方的結(jié)果叫做騫;

15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成aXlOn的形式

其中a是整數(shù)數(shù)位只有一位的數(shù)

這種記數(shù)法叫科學(xué)記數(shù)法.

16.近似數(shù)的準(zhǔn)確位:一個近似數(shù)

四舍五入到那一位

就說這個近似數(shù)的準(zhǔn)確到那一位.

17.有效數(shù)字:從左邊第一個不為零的數(shù)字起

到準(zhǔn)確的位數(shù)止

全部數(shù)字

都叫這個近似數(shù)的有效數(shù)字.

18.混合運算法則:先乘方

后乘除

最終加減.

本章內(nèi)容要求學(xué)生正確相識有理數(shù)的概念

在實際生活和學(xué)習(xí)數(shù)軸的根底上

理解正負(fù)數(shù)、相反數(shù)、肯定值的意義所在

重點利用有理數(shù)的運算法則解決實際問題.

體驗數(shù)學(xué)開展的一個重要緣由是生活實際的須要.激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的愛

老師培育學(xué)生的視察、歸納及概括的實力

使學(xué)生建立正確的數(shù)感和解決實際問題的實力

老師在講授本章內(nèi)容時

應(yīng)當(dāng)多創(chuàng)設(shè)情境

充分表達(dá)學(xué)生學(xué)習(xí)的主體性地位

第二章整式的加減

一.學(xué)問框架二.學(xué)問概念

1.單項式:在代數(shù)式中

若只含有乘法(包括乘方)運算

或雖含有除法運算

但除式中不含字母的一類代數(shù)式叫單項式.

2.單項式的系數(shù)及次數(shù):單項式中不為零的數(shù)字因數(shù)

叫單項式的數(shù)字系數(shù)

簡稱單項式的系數(shù);系數(shù)不為零時

單項式中全部字母指數(shù)的和

叫單項式的次數(shù).

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數(shù)及次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù)

每個單項式叫多項式的項;多項式里

次數(shù)最高項的次數(shù)叫多項式的次數(shù)

通過本章學(xué)習(xí)

應(yīng)使學(xué)生到達(dá)以下學(xué)習(xí)目的:

1.理解并駕馭單項式、多項式、整式等概念

弄清它們之間的區(qū)分及聯(lián)絡(luò)

2.理解同類項概念

駕馭合并同類項的方法

駕馭去括號時符號的變更規(guī)律

能正確地進(jìn)展同類項的合并和去括號

在準(zhǔn)確推斷、正確合并同類項的根底上

進(jìn)展整式的加減運算

3.理解整式中的字母表示數(shù)

整式的加減運算建立在數(shù)的運算根底上;理解合并同類項、去括號的根據(jù)

是安排律;理解數(shù)的運算律和運算性質(zhì)在整式的加減運算中仍舊成立

4.可以分析實際問題中的數(shù)量關(guān)系

并用還有字母的式子表示出來

在本章學(xué)習(xí)中

老師可以通過讓學(xué)生小組探討、合作學(xué)習(xí)等方式

經(jīng)驗概念的形成過程

初步培育學(xué)生視察、分析、抽象、概括等思維實力和應(yīng)用意識

第二章一元一次方程

一.學(xué)問框架

二.學(xué)問概念

1.一元一次方程:只含有一個未知數(shù)

并且未知數(shù)的次數(shù)是1

并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.

2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=O(x是未知數(shù)

a、b是已知數(shù)

且2力0).

3.一元一次方程解法的一般步驟:整理方程……去分母……去括

號……移項……合并同類項……系數(shù)化為1……(檢驗方程的解).

4.列一元一次方程解應(yīng)用題:

(1)讀題分析法:.......多用于“和

分問題"

細(xì)致讀題

找出表示相等關(guān)系的關(guān)鍵字

例如:"大

完成

增加

削減

配套一—"

利用這些關(guān)鍵字列出文字等式

并且據(jù)題意設(shè)出未知數(shù)

最終利用題目中的量及量的關(guān)系填入代數(shù)式

得到方程.

(2)畫圖分析法:.......多用于“行程問題"

利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的表達(dá)

細(xì)致讀題

按照題意畫出有關(guān)圖形

使圖形各局部具有特定的含義

通過圖形找相等關(guān)系是解決問題的關(guān)鍵

從而獲得布列方程的根據(jù)

最終利用量及量之間的關(guān)系(可把未知數(shù)看做已知量)

填入有關(guān)的代數(shù)式是獲得方程的根底.

11.列方程解應(yīng)用題的常用公式:

(1)行程問題:間隔=速度?時間;

(2)工程問題:工作量=工效?工時

(3)比率問題:局部=全體?比率9

(4)順逆流問題:順流速度=靜水速度+水流速度

逆流速度=靜水速度-水流速度;

(5)商品價格問題:售價=定價?折?

利潤=售價-本錢

(6)周長、面積、體積問題:C圓=2TIR

S圓=JIR2

C長方形=2(a+b)

S長方形=ab

C正方形=4a

S正方形=a2

S環(huán)形=ii(R2-r2)

V長方體=abc

V正方體=a3

V圓柱=;iR2h

V圓錐=nR2h.

本章內(nèi)容是代數(shù)學(xué)的核心

也是全部代數(shù)方程的根底

豐富多彩的問題情境和解決問題的歡樂很簡潔激起學(xué)生對數(shù)學(xué)的樂趣

所以要留意引導(dǎo)學(xué)生從身邊的問題探討起

進(jìn)展有效的數(shù)學(xué)活動和合作溝通

讓學(xué)生在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得學(xué)問

提升實力

體會數(shù)學(xué)思想方法

第三章圖形的相識初步

學(xué)問框架

本章的主要內(nèi)容是圖形的初步相識

從生活四周熟識的物體入手

對物體的形態(tài)的相識從感性逐步上升到抽象的幾何圖形.通過從不同方向

看立體圖形和綻開立體圖形

初步相識立體圖形及平面圖形的聯(lián)絡(luò).在此根底上

相識一些簡潔的平面圖形一直線、射線、線段和角.本章書涉及的數(shù)學(xué)思想:

1.分類探討思想

在過平面上若干個點畫直線時

應(yīng)留意對這些點分狀況探討;在畫圖形時

應(yīng)留意圖形的各種可能性

2.方程思想

在處理有關(guān)角的大小

線段大小的計算時

常須要通過列方程來解決

3.圖形變換思想

在探討角的概念時

要充分體會對射線旋轉(zhuǎn)的相識

在處理圖形時應(yīng)留意轉(zhuǎn)化思想的應(yīng)用

如立體圖形及平面圖形的相互轉(zhuǎn)化

4.化歸思想

在進(jìn)展直線、線段、角以及相關(guān)圖形的計數(shù)時

總要劃歸到公式n(n-l)/2的詳細(xì)運用上來

七年級數(shù)學(xué)(下)學(xué)問點

人教版七年級數(shù)學(xué)下冊主要包括相交線及平行線、平面直角坐標(biāo)系、

三角形、二元一次方程組、不等式及不等式組和數(shù)據(jù)的搜集、整理及表述

六章內(nèi)容

第五章相交線及平行線

一、學(xué)問框架

二、學(xué)問概念

1.鄰補角:兩條直線相交所構(gòu)成的四個角中

有公共頂點且有一條公共邊的兩個角是鄰補角

2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線

像這樣的兩個角互為對頂角

3.垂線:兩條直線相交成直角時

叫做相互垂直

其中一條叫做另一條的垂線

4.平行線:在同一平面內(nèi)

不相交的兩條直線叫做平行線

5.同位角、內(nèi)錯角、同旁內(nèi)角:

同位角:N1及N5像這樣具有一樣位置關(guān)系的一對角叫做同位角

內(nèi)錯角:N2及N6像這樣的一對角叫做內(nèi)錯角

同旁內(nèi)角:N2及/5像這樣的一對角叫做同旁內(nèi)角

6.命題:推斷一件事情的語句叫命題

7.平移:在平面內(nèi)

將一個圖形沿某個方向挪動肯定的間隔

圖形的這種挪動叫做平移平移變換

簡稱平移

8.對應(yīng)點:平移后得到的新圖形中每一點

都是由原圖形中的某一點挪動后得到的

這樣的兩個點叫做對應(yīng)點

9.定理及性質(zhì)

對頂角的性質(zhì):對頂角相等

10垂線的性質(zhì):

性質(zhì)1:過一點有且只有一條直線及已知直線垂直

性質(zhì)2:連接直線外一點及直線上各點的全部線段中

垂線段最短

11.平行公理:經(jīng)過直線外一點有且只有一條直線及已知直線平行

平行公理的推論:假如兩條直線都及第三條直線平行

那么這兩條直線也相互平行

12.平行線的性質(zhì):

性質(zhì)1:兩直線平行

同位角相等

性質(zhì)2:兩直線平行

內(nèi)錯角相等

性質(zhì)3:兩直線平行

同旁內(nèi)角互補

13.平行線的斷定:

斷定1:同位角相等

兩直線平行

斷定2:內(nèi)錯角相等

兩直線平行

斷定3:同旁內(nèi)角相等

兩直線平行

本章使學(xué)生理解在平面內(nèi)不重合的兩條直線相交及平行的兩種位置關(guān)

探討了兩條直線相交時的形成的角的特征

兩條直線相互垂直所具有的特性

兩條直線平行的長期共存條件和它全部的特征以及有關(guān)圖形平移變換的性

質(zhì)

利用平移設(shè)計一些美麗的圖案.重點:垂線和它的性質(zhì)

平行線的斷定方法和它的性質(zhì)

平移和它的性質(zhì)

以及這些的組織運用.難點:探究平行線的條件和特征

平行線條件及特征的區(qū)分

運用平移性質(zhì)探究圖形之間的平移關(guān)系

以及進(jìn)展圖案設(shè)計

第六章平面直角坐標(biāo)系

一.學(xué)問框架

二.學(xué)問概念

1.有序數(shù)對:有依次的兩個數(shù)a及b組成的數(shù)對叫做有序數(shù)對

記做(a

b)

2.平面直角坐標(biāo)系:在平面內(nèi)

兩條相互垂直且有公共原點的數(shù)軸組成平面直角坐標(biāo)系

3.橫軸、縱軸、原點:程度的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸

或縱軸;兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點

4.坐標(biāo):對于平面內(nèi)任一點P

過P分別向x軸

y軸作垂線

垂足分別在x軸

y軸上

對應(yīng)的數(shù)a

b分別叫點P的橫坐標(biāo)和縱坐標(biāo)

5.象限:兩條坐標(biāo)軸把平面分成四個局部

右上局部叫第一象限

按逆時針方向一次叫第二象限、第三象限、第四象限

坐標(biāo)軸上的點不在任何一個象限內(nèi)

平面直角坐標(biāo)系是數(shù)軸由一維到二維的過渡

同時它又是學(xué)習(xí)函數(shù)的根底

起到承上啟下的作用

另外

平面直角坐標(biāo)系將平面內(nèi)的點及數(shù)結(jié)合起來

表達(dá)了數(shù)形結(jié)合的思想

駕馭本節(jié)內(nèi)容對以后學(xué)習(xí)和生活有著主動的意義

老師在講授本章內(nèi)容時應(yīng)多從實際情形動身

通過對平面上的點的位置確定開展學(xué)生創(chuàng)新實力和應(yīng)用意識

第七章三角形

一.學(xué)問框架

二.學(xué)問概念

1.三角形:由不在同始終線上的三條線段首尾順次相接所組成的圖形叫做

三角形

2.三邊關(guān)系:三角形隨意兩邊的和大于第三邊

隨意兩邊的差小于第三邊

3.高:從三角形的一個頂點向它的對邊所在直線作垂線

頂點和垂足間的線段叫做三角形的高

4.中線:在三角形中

連接一個頂點和它的對邊中點的線段叫做三角形的中線

5.角平分線:三角形的一個內(nèi)角的平分線及這個角的對邊相交

這個角的頂點和交點之間的線段叫做三角形的角平分線

6.三角形的穩(wěn)定性:三角形的形態(tài)是固定的

三角形的這特性質(zhì)叫三角形的穩(wěn)定性

6.多邊形:在平面內(nèi)

由一些線段首尾順次相接組成的圖形叫做多邊形

7.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角

8.多邊形的外角:多邊形的一邊及它的鄰邊的延長線組成的角叫做多邊形

的外角

9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段

叫做多邊形的對角線

10.正多邊形:在平面內(nèi)

各個角都相等

各條邊都相等的多邊形叫做正多邊形

11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一局部完全覆蓋

叫做用多邊形覆蓋平面

12.公式及性質(zhì)

三角形的內(nèi)角和:三角形的內(nèi)角和為180°

三角形外角的性質(zhì):

性質(zhì)1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

性質(zhì)2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)-180°

多邊形的外角和:多邊形的內(nèi)角和為360°

多邊形對角線的條數(shù):(1)從n邊形的一個頂點動身可以引(n-3)條對

角線

把多邊形分詞(*2)個三角形

(2)n邊形共有條對角線

三角形是初中數(shù)學(xué)中幾何局部的根底圖形

在學(xué)習(xí)過程中

老師應(yīng)當(dāng)多激勵學(xué)生動腦動手

發(fā)覺和探究其中的學(xué)問奇妙

留意培育學(xué)生正確的數(shù)學(xué)情操和幾何思維實力

第八章二元一次方程組

一.學(xué)問構(gòu)造圖

二、學(xué)問概念

1.二元一次方程:含有兩個未知數(shù)

并且未知數(shù)的指數(shù)都是1

像這樣的方程叫做二元一次

方程

一般形式是ax+by=c(a^O

bwO)

2.二元一次方程組:把兩個二元一次方程合在一起

就組成了一個二元一次方程組

3.二元一次方程的解:一般地

使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解

4.二元一次方程組的解:一般地

二元一次方程組的兩個方程的公共解叫做二元一次方程組

5.消元:將未知數(shù)的個數(shù)由多化少

逐一解決的想法

叫做消元思想

6.代入消元:將一個未知數(shù)用含有另一個未知數(shù)的式子表示出來

再代入另一個方程

實現(xiàn)消元

進(jìn)而求得這個二元一次方程組的解

這種方法叫做代入消元法

簡稱代入法

7.加減消元法:當(dāng)兩個方程中同一未知數(shù)的系數(shù)相反或相等時

將兩個方程的兩邊分別相加或相減

就能消去這個未知數(shù)

這種方法叫做加減消元法

簡稱加減法

本章通過實例引入二元一次方程

二元一次方程組以及二元一次方程組的概念

培育學(xué)生對概念的理解和完好性和深入性

使學(xué)生駕馭好二元一次方程組的兩種解法.重點:二元一次方程組的解法

列二元一次方程組解決實際問題.難點:二元一次方程組解決實際問題

第九章不等式及不等式組

一.學(xué)問框架

二、學(xué)問概念

1.用符號"V"">""<"表示大小關(guān)系的式子叫做不等式

2.不等式的解:使不等式成立的未知數(shù)的值

叫做不等式的解

3.不等式的解集:一個含有未知數(shù)的不等式的全部解

組成這個不等式的解集

4.一元一次不等式:不等式的左、右兩邊都是整式

只有一個未知數(shù)

并且未知數(shù)的最高次數(shù)是1

像這樣的不等式

叫做一元一次不等式

5?一元一次不等式組:一般地

關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起

就組成6?了一個一元一次不等式組

7.定理及性質(zhì)

不等式的性質(zhì):

不等式的根本性質(zhì)1:不等式的兩邊都加上(或減去)同一個數(shù)(或式子)

不等號的方向不變

不等式的根本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù)

不等號的方向不變

不等式的根本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負(fù)數(shù)

不等號的方向變更

本章內(nèi)容要求學(xué)生經(jīng)驗建立一元一次不等式(組)這樣的數(shù)學(xué)模型并應(yīng)用

它解決實際問題的過程

體會不等式(組)的特點和作用

駕馭運用它們解決問題的一般方法

進(jìn)步分析問題、解決問題的實力

增加創(chuàng)新精神和應(yīng)用數(shù)學(xué)的意識

第十章數(shù)據(jù)的搜集、整理及描繪

一.學(xué)問框架

二.學(xué)問概念

1.全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查

2.抽樣調(diào)查:調(diào)查局部數(shù)據(jù)

根據(jù)局部來估計總體的調(diào)查方式稱為抽樣調(diào)查

3.總體:要考察的全體對象稱為總體

4.個體:組成總體的每一個考察對象稱為個體

5.樣本:被抽取的全部個體組成一個樣本

6.樣本容量:樣本中個體的數(shù)目稱為樣本容量

7.頻數(shù):一般地

我們稱落在不同小組中的數(shù)據(jù)個數(shù)為該組的頻數(shù)

8.頻率:頻數(shù)及數(shù)據(jù)總數(shù)的比為頻率

9.組數(shù)和組距:在統(tǒng)計數(shù)據(jù)時

把數(shù)據(jù)根據(jù)肯定的范圍分成若干各組

分成組的個數(shù)稱為組數(shù)

每一組兩個端點的差叫做組距

本章要求通過實際參及搜集、整理、描繪和分析數(shù)據(jù)的活動

經(jīng)驗統(tǒng)計的一般過程

感受統(tǒng)計在生活和消費中的作用

增加學(xué)習(xí)統(tǒng)計的愛好

初步建立統(tǒng)計的觀念

培育重視調(diào)查探討的良好習(xí)慣和科學(xué)看法

八年級數(shù)學(xué)(上)學(xué)問點

人教版八年級上冊主要包括全等三角形、軸對稱、實數(shù)、一次函數(shù)和整式

的乘除及分解因式五個章節(jié)的內(nèi)容

第十一章全等三角形

一.學(xué)問框架

二.學(xué)問概念

1.全等三角形:兩個三角形的形態(tài)、大小、都一樣時

其中一個可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運動(或稱變換)使之及另一個重

這兩個三角形稱為全等三角形

2.全等三角形的性質(zhì):全等三角形的對應(yīng)角相等、對應(yīng)邊相等

3.三角形全等的斷定公理及推論有:

(1)"邊角邊"簡稱"SAS"

(2)"角邊角"簡稱"ASA"

(3)"邊邊邊"簡稱”SSS”

(4)“角角邊"簡稱"AAS"

(5)斜邊和直角邊相等的兩直角三角形(HL)

4.角平分線推論:角的內(nèi)部到角的兩邊的間隔相等的點在叫的平分線上

5.證明兩三角形全等或利用它證明線段或角的相等的根本方法步驟:①、

確定已知條件(包括隱含條件

如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱

含的邊角關(guān)系)

②、回憶三角形斷定

搞清我們還須要什么

③、正確地書寫證明格式(依次和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).

在學(xué)習(xí)三角形的全等時

老師應(yīng)當(dāng)從實際生活中的圖形動身

引出全等圖形進(jìn)而引出全等三角形

通過直觀的理解和比擬發(fā)覺全等三角形的微妙之處

在經(jīng)驗三角形的角平分線、中線等探究中激發(fā)學(xué)生的集合思維

啟發(fā)他們的靈感

使學(xué)生體會到集合的真正魅力

第十二章軸對稱

一.學(xué)問框架

二.學(xué)問概念

1.對稱軸:假如一個圖形沿某條直線折疊后

直線兩旁的局部可以相互重合

那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸

2.性質(zhì):(1)軸對稱圖形的對稱軸

是任何一對對應(yīng)點所連線段的垂直平分線

(2)角平分線上的點到角兩邊間隔相等

(3)線段垂直平分線上的隨意一點到線段兩個端點的間隔相等

(4)及一條線段兩個端點間隔相等的點

在這條線段的垂直平分線上

(5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等

3.等腰三角形的性質(zhì):等腰三角形的兩個底角相等

(等邊對等角)

4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線相互重合

簡稱為“三線合一"

5.等腰三角形的斷定:等角對等邊

6.等邊三角形角的特點:三個內(nèi)角相等

等于60°

7.等邊三角形的斷定:三個角都相等的三角形是等腰三角形

有一個角是60°的等腰三角形是等邊三角形

有兩個角是60°的三角形是等邊三角形

8.直角三角形中

30°角所對的直角邊等于斜邊的一半

9.直角三角形斜邊上的中線等于斜邊的一半

本章內(nèi)容要求學(xué)生在建立在軸對稱概念的根底上

可以對生活中的圖形進(jìn)展分析鑒賞

親身經(jīng)驗數(shù)學(xué)美

正確理解等腰三角形、等邊三角形等的性質(zhì)和斷定

并利用這些性質(zhì)來解決一些數(shù)學(xué)問題

第十三章實數(shù)

1.算術(shù)平方根:一般地

假如一個正數(shù)X的平方等于a

即x2=a

那么正數(shù)x叫做a的算術(shù)平方根

記作

。的算術(shù)平方根為。;從定義可知

只有當(dāng)a>0時

a才有算術(shù)平方根

2.平方根:一般地

假如一個數(shù)x的平方根等于a

即x2=a

那么數(shù)x就叫做a的平方根

3.正數(shù)有兩個平方根(一正一負(fù))它們互為相反數(shù);。只有一個平方根

就是它本身;負(fù)數(shù)沒有平方根

4.正數(shù)的立方根是正數(shù);。的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)

5.數(shù)a的相反數(shù)是-a

一個正實數(shù)的肯定值是它本身

一個負(fù)數(shù)的肯定值是它的相反數(shù)

0的肯定值是0

實數(shù)局部主要要求學(xué)生理解無理數(shù)和實數(shù)的概念

知道實數(shù)和數(shù)軸上的點一一對應(yīng)

能估算無理數(shù)的大??;理解實數(shù)的運算法則及運算律

會進(jìn)展實數(shù)的運算

重點是實數(shù)的意義和實數(shù)的分類;實數(shù)的運算法則及運算律

第十四章一次函數(shù)

一?學(xué)問框架

二.學(xué)問概念

1.一次函數(shù):若兩個變量X

y間的關(guān)系式可以表示成y=kx+b(kr0)的形式

則稱y是x的一次函數(shù)(x為自變量

y為因變量)

特殊地

當(dāng)b=o時

稱y是x的正比例函數(shù)

2.正比例函數(shù)一般式:y=kx(k^O)

其圖象是經(jīng)過原點(。

0)的一條直線

3.正比例函數(shù)y=kx(k#0)的圖象是一條經(jīng)過原點的直線

當(dāng)k>0時

直線y=kx經(jīng)過第一、三象限

y隨x的增大而增大

當(dāng)k<0時

直線y=kx經(jīng)過第二、四象限

y隨x的增大而減小

在一次函數(shù)y=kx+b中:當(dāng)k>0時

y隨x的增大而增大;當(dāng)k<0時

y隨x的增大而減小

4.已知兩點坐標(biāo)求函數(shù)解析式:待定系數(shù)法

一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開場

也是今后學(xué)習(xí)其它函數(shù)學(xué)問的基石

在學(xué)習(xí)本章內(nèi)容時

老師應(yīng)當(dāng)多從實際問題動身

引出變量

從詳細(xì)到抽象的相識事物

培育學(xué)生良好的變更及對應(yīng)意識

體會數(shù)形結(jié)合的思想

在教學(xué)過程中

應(yīng)更加側(cè)重于理解和運用

在解決實際問題的同時

讓學(xué)習(xí)體會到數(shù)學(xué)的好用價值和樂趣

第十五章整式的乘除及分解因式

1.同底數(shù)騫的乘法法則:(m

n都是正數(shù))

2..塞的乘方法則:(m

n都是正數(shù))

3.整式的乘法

(1)單項式乘法法則:單項式相乘

把它們的系數(shù)、一樣字母分別相乘

對于只在一個單項式里含有的字母

連同它的指數(shù)作為積的一個因式

(2)單項式及多項式相乘:單項式乘以多項式

是通過乘法對加法的安排律

把它轉(zhuǎn)化為單項式乘以單項式

即單項式及多項式相乘

就是用單項式去乘多項式的每一項

再把所得的積相加

(3).多項式及多項式相乘

多項式及多項式相乘

先用一個多項式中的每一項乘以另一個多項式的每一項

再把所得的積相加

4.平方差公式:

5.完全平方公式:

6.同底數(shù)得的除法法則:同底數(shù)幕相除

底數(shù)不變

指數(shù)相減

即(arO

m、n都是正數(shù)

且m>n).

在應(yīng)用時須要留意以下幾點:

①法則運用的前提條件是“同底數(shù)幕相除"而且。不能做除數(shù)

所以法則中aRO.

②任何不等于。的數(shù)的。次塞等于1

(-2,50=1)

則00無意義.

③任何不等于0的數(shù)的-p次募(p是正整數(shù))

等于這個數(shù)的P的次募的倒數(shù)

即(a*0

P是正整數(shù))

而0-1

0-3都是無意義的;當(dāng)a>0時

a-p的值肯定是正的;當(dāng)a<0時

a-p的值可能是正也可能是負(fù)的

④運算要留意運算依次.

7.整式的除法

單項式除法單項式:單項式相除

把系數(shù)、同底數(shù)騫分別相除

作為商的因式

對于只在被除式里含有的字母

則連同它的指數(shù)作為商的一個因式;

多項式除以單項式:多項式除以單項式

先把這個多項式的每一項除以單項式

再把所得的商相加.

8.分解因式:把一個多項式化成幾個整式的積的形式

這種變形叫做把這個多項式分解因式.

分解因式的一般方法:L提公共因式法2.運用公式法3.十字相乘法

分解因式的步驟:(1)先看各項有沒有公因式

若有

則先提取公因式;

⑵再看能否運用公式法;

⑶用分組分解法

即通過分組后提取各組公因式或運用公式法來到達(dá)分解的目的;

⑷因式分解的最終結(jié)果必需是幾個整式的乘積

否則不是因式分解;

⑸因式分解的結(jié)果必需進(jìn)展到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.

整式的乘除及分解因式這章內(nèi)容學(xué)問點較多

外表看來零碎的概念和性質(zhì)也較多

但事實上是密不行分的整體

在學(xué)習(xí)本章內(nèi)容時

應(yīng)多打算些小組合作及溝通活動

培育學(xué)生推理實力、計算實力

在做題中體驗數(shù)學(xué)法則、公式的簡潔美、和諧美

進(jìn)步做題效率

八年級數(shù)學(xué)(下)學(xué)問點

人教版八年級下冊主要包括了分式、反比例函數(shù)、勾股定理、四邊形、數(shù)

據(jù)的分析五章內(nèi)容

第十六章分式

一.學(xué)問框架

二.學(xué)問概念

1.分式:形如A/B

A、B是整式

B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)

其中A叫做分式的分子

B叫做分式的分母

2.分式有意義的條件:分母不等于。

3.約分:把一個分式的分子和分母的公因式(不為1的數(shù))約去

這種變形稱為約分

4.通分:異分母的分式可以化成同分母的分式

這一過程叫做通分

分式的根本性質(zhì):分式的分子和分母同時乘以(或除以)同一個不為。的整

分式的值不變

用式子表示為:A/B=A*C/B*CA/B=A:C/B?C(A

B

C為整式

且C#0)

5.最簡分式:一個分式的分子和分母沒有公因式時

這個分式稱為最簡分式.約分時

一般將一個分式化為最簡分式.

6.分式的四則運算:1.同分母分式加減法則:同分母的分式相加減

分母不變

把分子相加減.用字母表示為:a/c±b/c=a±b/c

2.異分母分式加減法則:異分母的分式相加減

先通分

化為同分母的分式

然后再按同分母分式的加減法法則進(jìn)展計算.用字母表示為:a/b±c/d=ad

±cb/bd

3?分式的乘法法則:兩個分式相乘

把分子相乘的積作為積的分子

把分母相乘的積作為積的分母.用字母表示為:a/b*c/d=ac/bd

4?分式的除法法則:(1).兩個分式相除

把除式的分子和分母顛倒位置后再及被除式相乘.a/b+c/d=ad/bc

(2).除以一個分式

等于乘以這個分式的倒數(shù):a/b:c/d=a/b*d/c

7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.

8?分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母

將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗根

(求出未知數(shù)的值后必需驗根

因為在把分式方程化為整式方程的過程中

擴大了未知數(shù)的取值范圍

可能產(chǎn)生增根).

分式和分?jǐn)?shù)有著很多相像點

老師在講授本章內(nèi)容時

可以比照分?jǐn)?shù)的特點及性質(zhì)

讓學(xué)生自主學(xué)習(xí)

重點在于分式方程解實際應(yīng)用問題

第十七章反比例函數(shù)

第十七章反比例函數(shù)

一?學(xué)問框架

二.學(xué)問概念

1.反比例函數(shù):形如y=(k為常數(shù)

krO)的函數(shù)稱為反比例函數(shù)

其他形式xy=k

2.圖像:反比例函數(shù)的圖像屬于雙曲線

反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形

有兩條對稱軸:直線y=x和y=-x

對稱中心是:原點

3.性質(zhì):當(dāng)k>。時雙曲線的兩支分別位于第一、第三象限

在每個象限內(nèi)y值隨x值的增大而減??;

當(dāng)kvo時雙曲線的兩支分別位于第二、第四象限

在每個象限內(nèi)y值隨x值的增大而增大

4.|k|的幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段及

兩坐標(biāo)軸圍成的矩形的面積

在學(xué)習(xí)反比例函數(shù)時

老師可讓學(xué)生比照之前所學(xué)習(xí)的一次函數(shù)啟發(fā)學(xué)生進(jìn)展比照性學(xué)習(xí)

在做題時

培育和養(yǎng)成數(shù)形結(jié)合的思想

第十八章勾股定理

一?學(xué)問框架

2二

1.勾股定理:假如直角三角形的兩直角邊長分別為a

b

斜邊長為C

那么a2+b2=c2

勾股定理逆定理:假如三角形三邊長a

b

c滿意a2+b2=c2

那么這個三角形是直角三角形

2.定理:經(jīng)過證明被確認(rèn)正確的命題叫做定理

3.我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題

假如把其中一個叫做原命題

那么另一個叫做它的逆命題

(例:勾股定理及勾股定理逆定理)

勾股定理是直角三角形具備的重要性質(zhì)

本章要求學(xué)生在理解勾股定理的前提下

學(xué)會利用這個定理解決實際問題

可以通過自主學(xué)習(xí)的開展體驗獲得數(shù)學(xué)學(xué)問的感受

第十九章四邊形

一.學(xué)問框架

二.學(xué)問概念

1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形

2.平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等

平行四邊形的對角線相互平分

3.平行四邊形的斷定O1.兩組對邊分別相等的四邊形是平行四邊形

02.對角線相互平分的四邊形是平行四邊形;

03.兩組對角分別相等的四邊形是平行四邊形;

04.一組對邊平行且相等的四邊形是平行四邊形

4.三角形的中位線平行于三角形的第三邊

且等于第三邊的一半

5.直角三角形斜邊上的中線等于斜邊的一半

6.矩形的定義:有一個角是直角的平行四邊形

7.矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等

AC=BD

8.矩形斷定定理:.有一個角是直角的平行四邊形叫做矩形

02.對角線相等的平行四邊形是矩形

03.有三個角是直角的四邊形是矩形

9.菱形的定義:鄰邊相等的平行四邊形

1。.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線相互垂直

并且每一條對角線平分一組對角

11.菱形的斷定定理:O1.一組鄰邊相等的平行四邊形是菱形

02.對角線相互垂直的平行四邊形是菱形

03.四條邊相等的四邊形是菱形

12.S菱形=l/2Xab(a、b為兩條對角線)

13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形

14.正方形的性質(zhì):四條邊都相等

四個角都是直角

正方形既是矩形

又是菱形

15.正方形斷定定理:1.鄰邊相等的矩形是正方形

2.有一個角是直角的菱形是正方形

16.梯形的定義:一組對邊平行

另一組對邊不平行的四邊形叫做梯形

17.直角梯形的定義:有一個角是直角的梯形

18.等腰梯形的定義:兩腰相等的梯形

19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條

對角線相等

20.等腰梯形斷定定理:同一底上兩個角相等的梯形是等腰梯形

本章內(nèi)容是對平面上四邊形的分類及性質(zhì)上的探討

要求學(xué)生在學(xué)習(xí)過程中多動手多動腦

把自己的發(fā)覺和學(xué)問帶入做題中

因此老師在教學(xué)時可以多激勵學(xué)生自己總結(jié)四邊形的特點

這樣有利于學(xué)生對學(xué)問的把握

第二十章數(shù)據(jù)的分析

一.學(xué)問框架

二.學(xué)問概念

1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計算公式

權(quán)的理解:反映了某個數(shù)據(jù)在整個數(shù)據(jù)中的重要程度

2.中位數(shù):將一組數(shù)據(jù)根據(jù)由小到大(或由大到?。┑囊来闻帕?/p>

假如數(shù)據(jù)的個數(shù)是奇數(shù)

則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);假如數(shù)據(jù)的個數(shù)是

偶數(shù)

則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)

3.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)

4.極差:組數(shù)據(jù)中的最大數(shù)據(jù)及最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差

(range)

5.方差越大

數(shù)據(jù)的波動越大;方差越小

數(shù)據(jù)的波動越小

就越穩(wěn)定

本章內(nèi)容要求學(xué)生在經(jīng)驗數(shù)據(jù)的搜集、整理、分析過程中開展學(xué)生的

統(tǒng)計意識和數(shù)據(jù)處理的方法及實力

在教學(xué)過程中

以生活實例為主

讓學(xué)生體會到數(shù)據(jù)在生活中的重要性

九年級數(shù)學(xué)(上)學(xué)問點

人教版九年級數(shù)學(xué)上冊主要包括了二次根式、二元一次方程、旋轉(zhuǎn)、

圓和概率五個章節(jié)的內(nèi)容

第二十一章二次根式

一.學(xué)問框架

二.學(xué)問概念

二次根式:一般地

形如,A(a>0)的代數(shù)式叫做二次根式

當(dāng)a>0時

Ma表示a的算數(shù)平方根

其中,0=0

對于本章內(nèi)容

教學(xué)中應(yīng)到達(dá)以下幾方面要求:

1.理解二次根式的概念

理解被開方數(shù)必需是非負(fù)數(shù)的理由;

2.理解最簡二次根式的概念;

3.理解并駕馭下列結(jié)論:

1)是非負(fù)數(shù);(2);(3);

4.駕馭二次根式的加、減、乘、除運算法則

會用它們進(jìn)展有關(guān)實數(shù)的簡潔四則運算;

5.理解代數(shù)式的概念

進(jìn)一步體會代數(shù)式在表示數(shù)量關(guān)系方面的作用

第二十二章一元二次根式

一.學(xué)問框架

二.學(xué)問概念

一元二次方程:方程兩邊都是整式

只含有一個未知數(shù)(一元)

并且未知數(shù)的最高次數(shù)是2(二次)的方程

叫做一元二次方程.

一般地

任何一個關(guān)于X的一元二次方程

經(jīng)過整理

都能化成如下形式ax2+bx+c=o(awo).這種形式叫做一元二次方程的

一般形式.

一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a力0)后

其中ax2是二次項

a是二次項系數(shù);bx是一次項

b是一次項系數(shù);c是常數(shù)項.

本章內(nèi)容主要要求學(xué)生在理解一元二次方程的前提下

通過解方程來解決一些實際問題

(1)運用開平方法解形如(x+m)2=n(n>0)的方程;領(lǐng)悟降次——

轉(zhuǎn)化的數(shù)學(xué)思想.

(2)配方法解一元二次方程的一般步驟:現(xiàn)將已知方程化為一般形式;化

二次項系數(shù)為1;常數(shù)項移到右邊;方程兩邊都加上一次項系數(shù)的一半的

平方

使左邊配成一個完全平方式;變形為(x+p)2=q的形式

假如q>。

方程的根是x=-p士,q;假如qv。

方程無實根.

介紹配方法時

首先通過實際問題引出形如的方程

這樣的方程可以化為更為簡潔的形如的方程

由平方根的概念

可以得到這個方程的解

進(jìn)而舉例說明如何解形如的方程

然后舉例說明一元二次方程可以化為形如的方程

引出配方法

最終支配運用配方法解一元二次方程的例題

在例題中

涉及二次項系數(shù)不是1的一元二次方程

也涉及沒有實數(shù)根的一元二次方程

對于沒有實數(shù)根的一元二次方程

學(xué)了“公式法"以后

學(xué)生對這個內(nèi)容會有進(jìn)一步的理解

(3)一元二次方程ax2+bx+c=03力0)的根由方程的系數(shù)a、b、c而

因此:

解一元二次方程時

可以先將方程化為一般形式ax2+bx+c=0

當(dāng)b2-4ac>0時

將a、b、c代入式子x=就得到方程的根.(公式所出現(xiàn)的運算

恰好包括了所學(xué)過的六中運算

加、減、乘、除、乘方、開方

這表達(dá)了公式的統(tǒng)一性及和諧性

)這個式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的

方法叫公式法.

第二十三章旋轉(zhuǎn)

一?學(xué)問框架

二.學(xué)問概念

1.旋轉(zhuǎn):在平面內(nèi)

將一個圖形繞一個圖形按某個方向轉(zhuǎn)動一個角度

這樣的運動叫做圖形的旋轉(zhuǎn)

這個定點叫做旋轉(zhuǎn)中心

轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角

(圖形的旋轉(zhuǎn)是圖形上的每一點在平面上圍著某個固定點旋轉(zhuǎn)固定角度的

位置挪動

其中對應(yīng)點到旋轉(zhuǎn)中心的間隔相等

對應(yīng)線段的長度、對應(yīng)角的大小相等

旋轉(zhuǎn)前后圖形的大小和形態(tài)沒有變更

2.旋轉(zhuǎn)對稱中心:把一個圖形圍著一個定點旋轉(zhuǎn)一個角度后

及初始圖形重合

這種圖形叫做旋轉(zhuǎn)對稱圖形

這個定點叫做旋轉(zhuǎn)對稱中心

旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于?!?/p>

大于360°)

3.中心對稱圖形及中心對稱:

中心對稱圖形:假如把一個圖形圍著某一點旋轉(zhuǎn)180度后能及自身重合

那么我們就說

這個圖形成中心對稱圖形

中心對稱:假如把一個圖形圍著某一點旋轉(zhuǎn)18。度后能及另一個圖形重合

那么我們就說

這兩個圖形成中心對稱

4.中心對稱的性質(zhì):

關(guān)于中心對稱的兩個圖形是全等形

關(guān)于中心對稱的兩個圖形

對稱點連線都經(jīng)過對稱中心

并且被對稱中心平分

關(guān)于中心對稱的兩個圖形

對應(yīng)線段平行(或者在同始終線上)且相等

本章內(nèi)容通過讓學(xué)生經(jīng)驗視察、操作等過程理解旋轉(zhuǎn)的概念

探究旋轉(zhuǎn)的性質(zhì)

進(jìn)一步開展空間視察

培育幾何思維和審美意識

在實際問題中體驗數(shù)學(xué)的歡樂

激發(fā)對學(xué)習(xí)學(xué)習(xí)

第二十四章圓

一.學(xué)問框架

二.學(xué)問概念

1.圓:平面上到定點的間隔等于定長的全部點組成的圖形叫做圓

定點稱為圓心

定長稱為半徑

2.圓弧和弦:圓上隨意兩點間的局部叫做圓弧

簡稱弧

大于半圓的弧稱為優(yōu)弧

小于半圓的弧稱為劣弧

連接圓上隨意兩點的線段叫做弦

經(jīng)過圓心的弦叫做直徑

3.圓心角和圓周角:頂點在圓心上的角叫做圓心角

頂點在圓周上

且它的兩邊分別及圓有另一個交點的角叫做圓周角

4.內(nèi)心和外心:過三角形的三個頂點的圓叫做三角形的外接圓

其圓心叫做三角形的外心

和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓

其圓心稱為內(nèi)心

5.扇形:在圓上

由兩條半徑和一段弧圍成的圖形叫做扇形

6.圓錐側(cè)面綻開圖是一個扇形

這個扇形的半徑稱為圓錐的母線

7.圓和點的位置關(guān)系:以點P及圓O的為例(設(shè)P是一點

則PO是點到圓心的間隔)

P在。。夕卜

PO>r;P在OO上

PO=r;P在。O內(nèi)

PO<r

8.直線及圓有3種位置關(guān)系:無公共點為相離;有兩個公共點為相交

這條直線叫做圓的割線;圓及直線有唯一公共點為相切

這條直線叫做圓的切線

這個唯一的公共點叫做切點

9.兩圓之間有5種位置關(guān)系:無公共點的

一圓在另一圓之外叫外離

在之內(nèi)叫內(nèi)含;有唯一公共點的

一圓在另一圓之外叫外切

在之內(nèi)叫內(nèi)切;有兩個公共點的叫相交

兩圓圓心之間的間隔叫做圓心距

兩圓的半徑分別為R和r

且R>r

圓心距為P:外離P>R+r;夕卜切P=R+r;相交R-rvPvR+r;內(nèi)切P=R-r;

內(nèi)含P<R-r

10.切線的斷定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線

11.切線的性質(zhì):(1)經(jīng)過切點垂直于這條半徑的直線是圓的切線

(2)經(jīng)過切點垂直于切線的直線必經(jīng)過圓心

(3)圓的切線垂直于經(jīng)過切點的半徑

12.垂徑定理:平分弦(不是直徑)的直徑垂直于弦

并且平分弦所對的兩條弧

13.有關(guān)定理:

平分弦(不是直徑)的直徑垂直于弦

并且平分弦所對的兩條弧.

在同圓或等圓中

相等的圓心角所對的弧相等

所對的弦也相等.

在同圓或等圓中

同弧等弧所對的圓周角相等

都等于這條弧所對的圓心角的一半.

半圓(或直徑)所對的圓周角是直角

90°的圓周角所對的弦是直徑.

14.圓的計算公式1?圓的周長C=27ir=7id2.圓的面積S=nrA2;3.扇形

弧長l=n7rr/180

15.扇形面積S=TI(RA2-rA2)5.圓錐側(cè)面積S=7irl

第二十五章概率

學(xué)問框架

本章內(nèi)容要求學(xué)生理解事務(wù)的可能性

在探究溝通中學(xué)習(xí)體驗概率在生活中的樂趣和好用性

學(xué)會計算概率

九年級數(shù)學(xué)(下)學(xué)問點

人教版九年級數(shù)學(xué)下冊主要包括了二次函數(shù)、相像、銳角三角形、投

影及視圖四個章節(jié)的內(nèi)容

第二十六章二次函數(shù)

一.學(xué)問框架

二.?學(xué)問概念

1.二次函數(shù):一般地

自變量X和因變量y之間存在如下關(guān)系:一般式:y=axA2+bx+c(ar。

a、b、c為常數(shù))

則稱y為x的二次函數(shù)

2.二次函數(shù)的解析式三種形式

一般式y(tǒng)=ax2+bx+c(a#=O)

頂點式

交點式

3.二次函數(shù)圖像及性質(zhì)

對稱軸:

頂點坐標(biāo):

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論