版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023—2024學(xué)年第一學(xué)期拉薩市高中期末聯(lián)考高二數(shù)學(xué)試題注意事項(xiàng):1.本試卷滿分150分,考試時(shí)間120分鐘.2.答卷前,考生務(wù)必將自己的姓名、考生號等信息填寫在答題卡指定位置上.3.作答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡對應(yīng)題目的答案標(biāo)號涂黑.如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號.作答非選擇題時(shí),將答案寫在答題卡上.寫在本試卷上無效.一、單選題(本題共8小題,每題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知,,則直線的斜率為()A. B. C. D.2.平面的法向量為,平面的法向量為,若,則()A B. C. D.3.兩條平行直線與之間距離為()A. B. C.7 D.4.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.不確定5.如下圖所示,在正方體中,,分別是,的中點(diǎn),則異面直線與所成的角的大小為()A. B. C. D.6.以x軸為對稱軸,原點(diǎn)為頂點(diǎn)的拋物線上的一點(diǎn)到焦點(diǎn)的距離為3,則拋物線的方程是()A. B. C. D.7.若方程表示焦點(diǎn)在y軸上雙曲線,則實(shí)數(shù)m的取值范圍為()A. B.C. D.8.如圖,在平行六面體中,,,,點(diǎn)P在上,且,則在基底下的坐標(biāo)為()A B. C. D.二、多選題(本題共4小題,每題5分,共20分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求,全部選對的得5分,部分選對的得2分,有選錯(cuò)的得0分.)9.已知為兩條不同的直線,為兩個(gè)不同的平面,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則10.若=(3x,?5,4)與=(x,2x,?2)的夾角為鈍角,則x的取值可能為()A.1 B.2 C.3 D.411.已知圓,則下列說法正確的是()A.點(diǎn)在圓M內(nèi) B.圓M關(guān)于對稱C.半徑為1 D.直線與圓M相切12.已知橢圓:,則下列各選項(xiàng)正確的是()A.若的離心率為,則B.若,的焦點(diǎn)坐標(biāo)為C.若,則的長軸長為6D.不論取何值,直線都與沒有公共點(diǎn)三、填空題(本題共4小題,每題5分,共20分.)13.雙曲線的焦點(diǎn)到漸近線的距離為5,則該雙曲線的漸近線方程為_________.14.如圖,正四棱柱中,設(shè),點(diǎn)在線段上,且,則直線與平面所成角的正弦值是__________.15.第19屆亞洲運(yùn)動(dòng)會于2023年9月23日10月8日在我國杭州成功舉辦,中國國家隊(duì)以201金、111銀、71銅的優(yōu)異成績位列獎(jiǎng)牌榜榜首.此次亞運(yùn)會的頒獎(jiǎng)花束——“碩果累累”,由花材和花器兩部分組成,如圖1.其中花器的造型靈感來自中國南宋時(shí)期官窯花解,由國家級非物質(zhì)文化遺產(chǎn)東陽木雕制作而成,可以近似看作由大、小兩個(gè)圓臺拼接而成的組合體,如圖2.已知大圓臺的兩底面半徑和高分別為,小圓臺的兩底面半徑和高分別為,則該幾何體的體積為_________.16.已知圓:與圓:內(nèi)切,且圓的半徑小于6,點(diǎn)是圓上的一個(gè)動(dòng)點(diǎn),則點(diǎn)到直線:距離的最大值為_________.四、解答題(本題共6小題,17題10分,18—22題每題12分,共70分.)17.已知點(diǎn);(1)求過點(diǎn)且與平行直線方程;(2)求過點(diǎn)且在軸和軸上截距相等的直線方程.18.已知橢圓的兩焦點(diǎn)為為橢圓上一點(diǎn),且(1)求橢圓的標(biāo)準(zhǔn)方程;(2)斜率為的直線過橢圓的右焦點(diǎn),交橢圓兩點(diǎn),求線段的長.19.正四棱錐中,,,其中為底面中心,為上靠近的三等分點(diǎn).(1)求證:平面;(2)求四面體的體積.20.已知.(1)當(dāng)時(shí),與相交于兩點(diǎn),求直線的方程;(2)若與相切,求的值.21.如圖,長方體中,,M,N分別是,的中點(diǎn).(1)求證:平面;(2)求平面與平面夾角的余弦值.22.已知雙曲線的離心率為e,點(diǎn)A的坐標(biāo)是,O為坐標(biāo)原點(diǎn).(1)若雙曲線E的離心率,求實(shí)數(shù)m的取值范圍;(2)當(dāng)時(shí),設(shè)過點(diǎn)A的直線與雙曲線的左支交于P,Q兩個(gè)不同的點(diǎn),線段的中點(diǎn)為M點(diǎn),求的面積的取值范圍.2023—2024學(xué)年第一學(xué)期拉薩市高中期末聯(lián)考高二數(shù)學(xué)試題注意事項(xiàng):1.本試卷滿分150分,考試時(shí)間120分鐘.2.答卷前,考生務(wù)必將自己的姓名、考生號等信息填寫在答題卡指定位置上.3.作答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡對應(yīng)題目的答案標(biāo)號涂黑.如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號.作答非選擇題時(shí),將答案寫在答題卡上.寫在本試卷上無效.一、單選題(本題共8小題,每題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知,,則直線的斜率為()A. B. C. D.【答案】A【解析】【分析】直接由兩點(diǎn)的斜率計(jì)算公式計(jì)算即可.【詳解】由題意,,所以直線的斜率為.故選:A.2.平面的法向量為,平面的法向量為,若,則()A. B. C. D.【答案】D【解析】【分析】根據(jù)兩個(gè)平面垂直,兩個(gè)平面的法向量也垂直,求解即可.【詳解】因?yàn)?,所以,解?故選:D3.兩條平行直線與之間的距離為()A. B. C.7 D.【答案】D【解析】【分析】利用平行線之間的距離公式求解即可.【詳解】因?yàn)橹本€與平行,整理:,代入平行直線距離公式,則.故選:D4.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.不確定【答案】A【解析】【分析】求出圓心坐標(biāo)與半徑,再計(jì)算出圓心到直線的距離,即可判斷.【詳解】圓圓心,半徑,又圓心到直線的距離,所以直線與圓相交.故選:A5.如下圖所示,在正方體中,,分別是,的中點(diǎn),則異面直線與所成的角的大小為()A. B. C. D.【答案】C【解析】【分析】根據(jù)已知條件建立空間直角坐標(biāo)系,利用空間向量求異面直線所成角.【詳解】以為坐標(biāo)原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,設(shè)正方體棱長為2,則,,,,,,設(shè)異面直線與所成的角為,,則,所以.故選:C6.以x軸為對稱軸,原點(diǎn)為頂點(diǎn)的拋物線上的一點(diǎn)到焦點(diǎn)的距離為3,則拋物線的方程是()A. B. C. D.【答案】C【解析】【分析】利用拋物線的定義求解.【詳解】根據(jù)題意,可設(shè)拋物線的方程為,由拋物線的定義知,即,所以拋物線方程為.故選:C.7.若方程表示焦點(diǎn)在y軸上的雙曲線,則實(shí)數(shù)m的取值范圍為()A. B.C. D.【答案】A【解析】【分析】原方程可變形為,根據(jù)已知有,解出即可.【詳解】因?yàn)榉匠瘫硎窘裹c(diǎn)在y軸上的雙曲線,可變形為.所以有,即,解得.故選:A.8.如圖,在平行六面體中,,,,點(diǎn)P在上,且,則在基底下的坐標(biāo)為()A. B. C. D.【答案】B【解析】【分析】根據(jù)題意和空間向量的線性運(yùn)算即可求解.【詳解】由題意得,,,所以,即,所以.故選:B二、多選題(本題共4小題,每題5分,共20分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求,全部選對的得5分,部分選對的得2分,有選錯(cuò)的得0分.)9.已知為兩條不同的直線,為兩個(gè)不同的平面,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則【答案】BC【解析】【分析】利用線線、線面、面面關(guān)系可判斷ABC,舉反例可判斷D.【詳解】對于A,若,則,或與異面,故A錯(cuò)誤;對于B,若,則,故B正確;對于C,若,則,故C正確;對于D,如下圖,在長方體中,,則,,或與相交,故D錯(cuò)誤.故選:BC.10.若=(3x,?5,4)與=(x,2x,?2)的夾角為鈍角,則x的取值可能為()A.1 B.2 C.3 D.4【答案】ABC【解析】【分析】根據(jù)題意,分析可得兩個(gè)向量不共線,由向量數(shù)量積的計(jì)算公式可得且不反向,解可得的取值范圍,分析選項(xiàng)可得答案.【詳解】根據(jù)題意,若與共線,則有,無解,即兩個(gè)向量不會共線,若與的夾角為鈍角,必有,解可得:,分析選項(xiàng):、2、3符合,故選:ABC.11.已知圓,則下列說法正確的是()A.點(diǎn)在圓M內(nèi) B.圓M關(guān)于對稱C.半徑為1 D.直線與圓M相切【答案】CD【解析】【分析】化出圓的標(biāo)準(zhǔn)方程后,再逐項(xiàng)驗(yàn)證.【詳解】解:圓的標(biāo)準(zhǔn)方程為:,圓心為,半徑為1,A.因?yàn)椋渣c(diǎn)在圓M外,故錯(cuò)誤;B.因?yàn)?,即圓心不在直線上,故錯(cuò)誤;C.由圓標(biāo)準(zhǔn)方程知,半徑為1,故正確;D.因?yàn)閳A心為到直線的距離為,與圓M的半徑相等,故直線與圓M相切,故正確;故選:CD12.已知橢圓:,則下列各選項(xiàng)正確的是()A.若的離心率為,則B.若,的焦點(diǎn)坐標(biāo)為C.若,則的長軸長為6D.不論取何值,直線都與沒有公共點(diǎn)【答案】BCD【解析】【分析】對于A,分焦點(diǎn)在軸上和焦點(diǎn)在軸上討論即可判斷;對于B,根據(jù)得出的焦點(diǎn)在軸上,再由平方關(guān)系即可判斷;對于C,根據(jù),可以得出,根據(jù)長軸長的定義即可判斷;對于D,首先求出的范圍,然后在方程中,令,得出矛盾,由此即可判斷.【詳解】對于A,當(dāng)橢圓:的焦點(diǎn)在軸上時(shí),此時(shí);但當(dāng)橢圓:的焦點(diǎn)在軸上時(shí),此時(shí),解得,綜上,若的離心率為,則或,故A錯(cuò)誤;對于B,若,則的焦點(diǎn)在軸上,,即的焦點(diǎn)坐標(biāo)為,故B正確;對于C,若,則的焦點(diǎn)在軸上,,所以的長軸長為,故C正確;對于D,由題意方程表示橢圓,所以,在中令,得,即,結(jié)合可知,,這與矛盾,這表明了不論取何值,直線都與沒有公共點(diǎn),故D正確.故選:BCD.三、填空題(本題共4小題,每題5分,共20分.)13.雙曲線的焦點(diǎn)到漸近線的距離為5,則該雙曲線的漸近線方程為_________.【答案】(或)【解析】【分析】寫出雙曲線的一條漸近線方程和一個(gè)焦點(diǎn)坐標(biāo),根據(jù)雙曲線的焦點(diǎn)到漸近線的距離為5,求得b即可.【詳解】解:雙曲線的一條漸近線方程為,一個(gè)焦點(diǎn)坐標(biāo)為,因?yàn)殡p曲線的焦點(diǎn)到漸近線的距離為5,所以,解得所以該雙曲線的漸近線方程為y=故答案為:(或)14.如圖,正四棱柱中,設(shè),點(diǎn)在線段上,且,則直線與平面所成角的正弦值是__________.【答案】##【解析】【分析】建立空間直角坐標(biāo)系,求出平面的法向量,求出線面角的正弦值.【詳解】以坐標(biāo)原點(diǎn),所在直線分別為軸,建立空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則,令,則,故,設(shè)直線與平面所成角大小為,則,故答案為:15.第19屆亞洲運(yùn)動(dòng)會于2023年9月23日10月8日在我國杭州成功舉辦,中國國家隊(duì)以201金、111銀、71銅的優(yōu)異成績位列獎(jiǎng)牌榜榜首.此次亞運(yùn)會的頒獎(jiǎng)花束——“碩果累累”,由花材和花器兩部分組成,如圖1.其中花器的造型靈感來自中國南宋時(shí)期官窯花解,由國家級非物質(zhì)文化遺產(chǎn)東陽木雕制作而成,可以近似看作由大、小兩個(gè)圓臺拼接而成的組合體,如圖2.已知大圓臺的兩底面半徑和高分別為,小圓臺的兩底面半徑和高分別為,則該幾何體的體積為_________.【答案】【解析】【分析】根據(jù)圓臺的體積公式求解即可.【詳解】根據(jù)圓臺的體積公式,可得(),故答案為:16.已知圓:與圓:內(nèi)切,且圓的半徑小于6,點(diǎn)是圓上的一個(gè)動(dòng)點(diǎn),則點(diǎn)到直線:距離的最大值為_________.【答案】2【解析】【分析】根據(jù)兩圓內(nèi)切求出圓的半徑,再求圓心到直線距離d即可得解.【詳解】根據(jù)題意,圓:化為標(biāo)準(zhǔn)方程為,其圓心為,半徑,,又由圓與圓內(nèi)切,且圓的半徑小于6,則有,解得,圓心到的距離,點(diǎn)是圓上一個(gè)動(dòng)點(diǎn),則點(diǎn)到直線:距離的最大值為.故答案為:2四、解答題(本題共6小題,17題10分,18—22題每題12分,共70分.)17.已知點(diǎn);(1)求過點(diǎn)且與平行的直線方程;(2)求過點(diǎn)且在軸和軸上截距相等的直線方程.【答案】(1)(2)或【解析】【分析】(1)利用直線平行的斜率關(guān)系和直線的點(diǎn)斜式方程求解即可;(2)分類討論截距是否為0進(jìn)行求解即可.【小問1詳解】直線的斜率:,故過點(diǎn)且與平行的直線方程斜率.且故直線方程:,即.小問2詳解】過點(diǎn)且在軸和軸上截距相等的直線方程,當(dāng)截距為0時(shí),直線過原點(diǎn),直線方程為:,即;當(dāng)截距不為0時(shí),由截距相等可設(shè)直線方程為:,代入得,故直線方程為即.綜上得:直線方程為或18.已知橢圓的兩焦點(diǎn)為為橢圓上一點(diǎn),且(1)求橢圓的標(biāo)準(zhǔn)方程;(2)斜率為的直線過橢圓的右焦點(diǎn),交橢圓兩點(diǎn),求線段的長.【答案】18.19.【解析】【分析】(1)根據(jù)橢圓的定義求解即可;(2)利用弦長公式求解即可.【小問1詳解】,,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】斜率為的直線過橢圓的右焦點(diǎn)所以直線方程為:,聯(lián)立橢圓的方程得:,化簡得:設(shè),則,故.19.正四棱錐中,,,其中為底面中心,為上靠近的三等分點(diǎn).(1)求證:平面;(2)求四面體的體積.【答案】(1)證明見解析(2)【解析】【分析】(1)連接,,則與交于點(diǎn),由正四棱錐的性質(zhì)得到,平面,則,即可得證;(2)首先求出,再由為上靠近的三等分點(diǎn),得到,所以.【小問1詳解】在正四棱錐中為底面中心,連接,,則與交于點(diǎn),且,平面,平面,所以,又,平面,所以平面.【小問2詳解】因?yàn)?,,所以,又為上靠近的三等分點(diǎn),所以,則.20.已知.(1)當(dāng)時(shí),與相交于兩點(diǎn),求直線的方程;(2)若與相切,求的值.【答案】(1)(2)答案見解析【解析】【分析】(1)兩圓相交,兩個(gè)方程作差即為交點(diǎn)弦所在直線方程.(2)兩圓相切,分內(nèi)切與外切分別討論求參數(shù)a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保險(xiǎn)銷售季度報(bào)告模板
- 母親的俗語格言詩句
- 2024年掌上華醫(yī)(醫(yī)院版)考試題庫(附答案)
- 二零二五版幼兒園安全風(fēng)險(xiǎn)評估與應(yīng)急預(yù)案合同4篇
- 特許連鎖加盟協(xié)議(2025年版)3篇
- 2024年員工宿舍的管理規(guī)章制度守則
- 二零二五年度航空航天產(chǎn)業(yè)園區(qū)場地租賃合同范本4篇
- 二零二五年度旅游項(xiàng)目貸款擔(dān)保服務(wù)協(xié)議3篇
- 2025年度家庭式別墅租賃管理協(xié)議范本4篇
- 美甲店二零二五年度員工培訓(xùn)及技能提升服務(wù)合同4篇
- 農(nóng)用地土壤環(huán)境質(zhì)量類別劃分技術(shù)指南(試行)(環(huán)辦土壤2017第97號)
- 反向開票政策解讀課件
- 工程周工作計(jì)劃
- 房地產(chǎn)銷售任務(wù)及激勵(lì)制度
- 六年級語文下冊14文言文二則《學(xué)弈》課件
- 2024年內(nèi)蒙古中考語文試卷五套合卷附答案
- 并購指南(如何發(fā)現(xiàn)好公司)
- 垃圾分類亭合同協(xié)議書
- 物權(quán)轉(zhuǎn)移協(xié)議
- 高三高考地理一輪課時(shí)練習(xí):洋流(單選題)
- 2024年餐飲類“食品安全及質(zhì)量管理員”知識考試題庫(附含答案)
評論
0/150
提交評論