4-1-3 黃金分割課件 浙教版數(shù)學(xué)九年級上冊_第1頁
4-1-3 黃金分割課件 浙教版數(shù)學(xué)九年級上冊_第2頁
4-1-3 黃金分割課件 浙教版數(shù)學(xué)九年級上冊_第3頁
4-1-3 黃金分割課件 浙教版數(shù)學(xué)九年級上冊_第4頁
4-1-3 黃金分割課件 浙教版數(shù)學(xué)九年級上冊_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

4.1.3黃金分割浙教版九年級上冊學(xué)習(xí)目標(biāo)1.知道黃金分割的定義,會(huì)找一條線段的黃金分割點(diǎn),會(huì)判斷某一點(diǎn)是否為一條線段的黃金分割點(diǎn).2.通過找一條線段的黃金分割點(diǎn),培養(yǎng)理解與動(dòng)手能力.3.理解黃金分割的意義,并能動(dòng)手找到和制作黃金分割點(diǎn)和圖形,認(rèn)識教學(xué)與人類生活的密切聯(lián)系.復(fù)習(xí)回顧【思考】1.你還記得怎樣判斷四個(gè)數(shù)成比例嗎?如果兩個(gè)數(shù)的比值與另兩個(gè)數(shù)的比值相等,就說這四個(gè)數(shù)成比例。2.什么是成比例線段?四條線段a,b,c,d中,如果a與b的比等于c與d的比,即,那么這四條線段a,b,c,d叫作成比例線段,簡稱比例線段.新知講解已知算一算,b2=ac成立嗎?∴b2=ac成立a,b,b,c這四個(gè)數(shù)成比例嗎?新知講解a,b,b,c這四個(gè)數(shù)成比例嗎?a:b=b:c∴a,b,b,c這四個(gè)數(shù)成比例.新知講解比例中項(xiàng)一般地,如果三個(gè)數(shù)a,b,c滿足比例式(或a:b=b:c),則b就叫做a,c的比例中項(xiàng).b2=ac新知講解【做一做】1.1是不是的比例中項(xiàng)?如果是比例中項(xiàng),請寫出相應(yīng)的比例式.∴1是的比例中項(xiàng).新知講解【做一做】2.已知線段a=3,b=27,求a,b的比例中項(xiàng)線段.解:設(shè)比例中項(xiàng)為c,則c2=ab=3×27,∴c=±9,∵c>0,∴c=9,即a、b的比例中項(xiàng)線段為9.新知講解下圖是意大利著名畫家達(dá)·芬奇的名畫《蒙娜麗莎》.畫面中臉部被圍在矩形ABCD內(nèi),圖中四邊形BCEF為正方形.量一量點(diǎn)F到點(diǎn)A,B的距離.相等嗎?新知講解BPA如圖,如果點(diǎn)P把線段AB分成兩條線段AP和PB,使AP>PB,且,那么稱線段AB被點(diǎn)P黃金分割.點(diǎn)P叫做線段AB的黃金分割點(diǎn),所分成的較長一條線段AP與整條線段AB的比叫做黃金比.新知講解例如,下圖中,,它們都是黃金比,又因?yàn)锽C=BF,所以矩形ABCD的寬與長之比也是黃金比.新知講解應(yīng)用一元二次方程的知識,可以求出黃金比的數(shù)值.新知講解歷史上,人們視黃金分割為“最美麗”的幾何比率,廣泛應(yīng)用于建筑和圖案設(shè)計(jì)等方面.有趣的是,在自然界中也有很多黃金分割的例子,例如,蝴蝶的身長與雙翅展開后的長度之比接近黃金比的近似值0.618.圖中所示的框住古希臘神廟圖形的長方形,它的寬與長之比就等于黃金比.新知講解【例5】如圖,已知線段AB=,點(diǎn)P是它的黃金分割點(diǎn),AP>PB.分別求AP,BP的長.課堂練習(xí)【知識技能類作業(yè)】

必做題:1.已知線段a,b,c,其中c是a和b的比例中項(xiàng),若a=4,b=9,則c=()A.4B.6C.9D.36B2.已知x是1和4的比例中項(xiàng),則x的值為().A.±3

B.±2C.2

D.1課堂練習(xí)B課堂練習(xí)3.古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比約是0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.若小凡的身高滿足此黃金分割比例,且肚臍至足底的長度為108cm,則小凡的身高約為().A.155cmB.165cmC.175cmD.185cmC課堂練習(xí)4.大自然是美的設(shè)計(jì)師,即使是一片小小的樹葉,也蘊(yùn)含著“黃金分割”(黃金比的近似值0.618).如圖,P為AB的黃金分割點(diǎn)(AP>BP),如果AB的長度為10cm,那么較長線段AP的長度為________cm.6.18課堂練習(xí)【知識技能類作業(yè)】

選做題:C課堂練習(xí)C課堂練習(xí)【綜合實(shí)踐類作業(yè)】7.黃金分割比例是使矩形最具美感的比例,即矩形的寬與長之比為,這樣的矩形被稱為黃金矩形,如古希臘的帕特農(nóng)神廟其立面就接近于黃金矩形,小華想設(shè)計(jì)一張版面為黃金矩形的海報(bào),已知海報(bào)的寬為(20+)cm,則海報(bào)的長應(yīng)設(shè)計(jì)為多少cm?課堂練習(xí)【綜合實(shí)踐類作業(yè)】解:設(shè)海報(bào)的長應(yīng)設(shè)計(jì)為xcm,課堂總結(jié)本節(jié)課你學(xué)到了哪些知識?1.一般地,如果三個(gè)數(shù)a,b,c滿足比例式(或a:b=b:c),則b就叫做a,c的比例中項(xiàng).b2=ac2.如果點(diǎn)P把線段AB分成兩條線段AP和PB,使AP>PB,且,那么稱線段AB被點(diǎn)P黃金分割.板書設(shè)計(jì)課題:4.1.3黃金分割

教師板演區(qū)

學(xué)生展示區(qū)一、比例中項(xiàng)二、黃金分割三、例題講解作業(yè)布置【知識技能類作業(yè)】必做題1.生活中到處可見黃金分割的美,如圖,在設(shè)計(jì)人體雕像時(shí),使雕像的腰部以下a與全身6的高度比值接近0.618,可以增加視覺美感,若圖中b為2米,則a約為().A.1.24米B.1.38米C.1.42米D.1.62米A作業(yè)布置2.我們知道,兩條鄰邊之比等于黃金分割數(shù)的矩形叫做黃金矩形,如圖,已知矩形ABCD是黃金矩形,點(diǎn)E在邊BC上,將這個(gè)矩形沿直線AE折疊,使點(diǎn)B落在邊AD上的點(diǎn)F處,那么EF與CE的比值等于().A.B.C.D.A作業(yè)布置選做題:B作業(yè)布置選做題:4.如圖,已知點(diǎn)C是線段AB的黃金分割點(diǎn),且BC>AC.若S1表示以BC為邊的正方形的面積,S2表示長為AD(AD=AB)、寬為AC的矩形的面積,則S1與S2的大小關(guān)系為().A.S1=S2B.S1>S2C.S1<S2D.無法確定A作業(yè)布置【綜合實(shí)踐類作業(yè)】5.(1)已知a=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論