吉林省長春市吉大尚德校2024屆中考數(shù)學(xué)最后一模試卷含解析_第1頁
吉林省長春市吉大尚德校2024屆中考數(shù)學(xué)最后一模試卷含解析_第2頁
吉林省長春市吉大尚德校2024屆中考數(shù)學(xué)最后一模試卷含解析_第3頁
吉林省長春市吉大尚德校2024屆中考數(shù)學(xué)最后一模試卷含解析_第4頁
吉林省長春市吉大尚德校2024屆中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省長春市吉大尚德校2024屆中考數(shù)學(xué)最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,∠C=90°,AD是∠BAC的角平分線,若CD=2,AB=8,則△ABD的面積是()A.6 B.8 C.10 D.122.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標(biāo)為 B.圖像的對稱軸在軸的右側(cè)C.當(dāng)時,的值隨值的增大而減小 D.的最小值為-33.如圖,在平面直角坐標(biāo)系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數(shù)y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.4.如圖,將△ABC繞點C旋轉(zhuǎn)60°得到△A′B′C′,已知AC=6,BC=4,則線段AB掃過的圖形面積為()A. B. C.6π D.以上答案都不對5.?dāng)?shù)軸上分別有A、B、C三個點,對應(yīng)的實數(shù)分別為a、b、c且滿足,|a|>|c|,b?c<0,則原點的位置()A.點A的左側(cè) B.點A點B之間C.點B點C之間 D.點C的右側(cè)6.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是A. B. C. D.7.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.68.如圖,正方形ABCD的頂點C在正方形AEFG的邊AE上,AB=2,AE=,則點G到BE的距離是()A. B. C. D.9.下列命題中,正確的是()A.菱形的對角線相等B.平行四邊形既是軸對稱圖形,又是中心對稱圖形C.正方形的對角線不能相等D.正方形的對角線相等且互相垂直10.如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個二、填空題(共7小題,每小題3分,滿分21分)11.已知圖中的兩個三角形全等,則∠1等于____________.12.如圖,點A(m,2),B(5,n)在函數(shù)(k>0,x>0)的圖象上,將該函數(shù)圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應(yīng)點分別為A′、B′.圖中陰影部分的面積為8,則k的值為.13.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.14.已知拋物線y=x2上一點A,以A為頂點作拋物線C:y=x2+bx+c,點B(2,yB)為拋物線C上一點,當(dāng)點A在拋物線y=x2上任意移動時,則yB的取值范圍是_________.15.化簡:3216.一天晚上,小偉幫助媽媽清洗兩個只有顏色不同的有蓋茶杯,突然停電了,小偉只好把杯蓋和茶杯隨機地搭配在一起,則顏色搭配正確的概率是_____.17.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F(xiàn)分別是底邊AD,BC的中點,連接EF,點P是EF上的任意一點,連接PA,PB,則PA+PB的最小值為__.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.若∠ABC=70°,則∠NMA的度數(shù)是度.若AB=8cm,△MBC的周長是14cm.①求BC的長度;②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.19.(5分)某同學(xué)用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設(shè)AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數(shù)關(guān)系式;(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?20.(8分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規(guī)作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.21.(10分)如圖,在△ABC中,∠BAC=90°,AD⊥BC于點D,BF平分∠ABC交AD于點E,交AC于點F,求證:AE=AF.22.(10分)(1)計算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.23.(12分)某街道需要鋪設(shè)管線的總長為9000,計劃由甲隊施工,每天完成150.工作一段時間后,因為天氣原因,想要40天完工,所以增加了乙隊.如圖表示剩余管線的長度與甲隊工作時間(天)之間的函數(shù)關(guān)系圖象.(1)直接寫出點的坐標(biāo);(2)求線段所對應(yīng)的函數(shù)解析式,并寫出自變量的取值范圍;(3)直接寫出乙隊工作25天后剩余管線的長度.24.(14分)先化簡,再求值÷(x﹣),其中x=.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】分析:過點D作DE⊥AB于E,先求出CD的長,再根據(jù)角平分線上的點到角的兩邊的距離相等可得DE=CD=2,然后根據(jù)三角形的面積公式列式計算即可得解.詳解:如圖,過點D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分線,∴DE=CD=2,∴△ABD的面積故選B.點睛:考查角平分線的性質(zhì),角平分線上的點到角兩邊的距離相等.2、D【解題分析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當(dāng)x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當(dāng)x<-1時,y隨x的增大而減小,故選項C錯誤,當(dāng)x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.3、A【解題分析】【分析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質(zhì)得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征計算k的值.【題目詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【題目點撥】本題考查了等腰直角三角形的性質(zhì)以及反比例函數(shù)圖象上點的坐標(biāo)特征,熟知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k是解題的關(guān)鍵.4、D【解題分析】

從圖中可以看出,線段AB掃過的圖形面積為一個環(huán)形,環(huán)形中的大圓半徑是AC,小圓半徑是BC,圓心角是60度,所以陰影面積=大扇形面積-小扇形面積.【題目詳解】陰影面積=π.

故選D.【題目點撥】本題的關(guān)鍵是理解出,線段AB掃過的圖形面積為一個環(huán)形.5、C【解題分析】分析:根據(jù)題中所給條件結(jié)合A、B、C三點的相對位置進行分析判斷即可.詳解:A選項中,若原點在點A的左側(cè),則,這與已知不符,故不能選A;B選項中,若原點在A、B之間,則b>0,c>0,這與b·c<0不符,故不能選B;C選項中,若原點在B、C之間,則且b·c<0,與已知條件一致,故可以選C;D選項中,若原點在點C右側(cè),則b<0,c<0,這與b·c<0不符,故不能選D.故選C.點睛:理解“數(shù)軸上原點右邊的點表示的數(shù)是正數(shù),原點表示的是0,原點左邊的點表示的數(shù)是負(fù)數(shù),距離原點越遠(yuǎn)的點所表示的數(shù)的絕對值越大”是正確解答本題的關(guān)鍵.6、A【解題分析】

根據(jù)一元二次方程的根的判別式,建立關(guān)于m的不等式,求出m的取值范圍即可.【題目詳解】∵關(guān)于x的一元二次方程x2﹣3x+m=0有兩個不相等的實數(shù)根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故選A.【題目點撥】本題考查了根的判別式,解題的關(guān)鍵在于熟練掌握一元二次方程根的情況與判別式△的關(guān)系,即:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.7、B【解題分析】

根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【題目詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【題目點撥】考查了二次函數(shù)的最值,解題時,利用配方法和非負(fù)數(shù)的性質(zhì)求得xy的最大值.8、A【解題分析】

根據(jù)平行線的判定,可得AB與GE的關(guān)系,根據(jù)平行線間的距離相等,可得△BEG與△AEG的關(guān)系,根據(jù)根據(jù)勾股定理,可得AH與BE的關(guān)系,再根據(jù)勾股定理,可得BE的長,根據(jù)三角形的面積公式,可得G到BE的距離.【題目詳解】連接GB、GE,由已知可知∠BAE=45°.又∵GE為正方形AEFG的對角線,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB與GE間的距離相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.過點B作BH⊥AE于點H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.設(shè)點G到BE的距離為h.∴S△BEG=?BE?h=×2×h=1.∴h=.即點G到BE的距離為.故選A.【題目點撥】本題主要考查了幾何變換綜合題.涉及正方形的性質(zhì),全等三角形的判定及性質(zhì),等積式及四點共圓周的知識,綜合性強.解題的關(guān)鍵是運用等積式及四點共圓的判定及性質(zhì)求解.9、D【解題分析】

根據(jù)菱形,平行四邊形,正方形的性質(zhì)定理判斷即可.【題目詳解】A.菱形的對角線不一定相等,A錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,B錯誤;C.正方形的對角線相等,C錯誤;D.正方形的對角線相等且互相垂直,D正確;故選:D.【題目點撥】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.10、A【解題分析】

①正確.只要證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正確.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;③正確.只要證明DM垂直平分CF,即可證明;④正確.設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,可得tan∠CAD===.【題目詳解】如圖,過D作DM∥BE交AC于N.∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于點F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴=.∵AE=AD=BC,∴=,∴CF=2AF,故②正確;∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF.∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正確.故選A.【題目點撥】本題考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算以及解直角三角形的綜合應(yīng)用,正確的作出輔助線構(gòu)造平行四邊形是解題的關(guān)鍵.解題時注意:相似三角形的對應(yīng)邊成比例.二、填空題(共7小題,每小題3分,滿分21分)11、58°【解題分析】如圖,∠2=180°?50°?72°=58°,∵兩個三角形全等,∴∠1=∠2=58°.故答案為58°.12、2.【解題分析】試題分析:∵將該函數(shù)圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應(yīng)點分別為A′、B′,圖中陰影部分的面積為8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案為2.考點:2.反比例函數(shù)系數(shù)k的幾何意義;2.平移的性質(zhì);3.綜合題.13、【解題分析】

設(shè)該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【題目詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達(dá)小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【題目點撥】本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.14、ya≥1【解題分析】

設(shè)點A的坐標(biāo)為(m,n),由題意可知n=m1,從而可知拋物線C為y=(x-m)1+n,化簡為y=x1-1mx+1m1,將x=1代入y=x1-1mx+1m1,利用二次函數(shù)的性質(zhì)即可求出答案.【題目詳解】設(shè)點A的坐標(biāo)為(m,n),m為全體實數(shù),

由于點A在拋物線y=x1上,

∴n=m1,

由于以A為頂點的拋物線C為y=x1+bx+c,

∴拋物線C為y=(x-m)1+n

化簡為:y=x1-1mx+m1+n=x1-1mx+1m1,

∴令x=1,

∴ya=4-4m+1m1=1(m-1)1+1≥1,

∴ya≥1,

故答案為ya≥1【題目點撥】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是根據(jù)題意求出ya=4-4m+1m1=1(m-1)1+1.15、-6【解題分析】

根據(jù)二次根式的乘法運算法則以及絕對值的性質(zhì)和二次根式的化簡分別化簡整理得出即可:【題目詳解】32故答案為-616、【解題分析】分析:根據(jù)概率的計算公式.顏色搭配總共有4種可能,分別列出搭配正確和搭配錯誤的可能,進而求出各自的概率即可.詳解:用A和a分別表示第一個有蓋茶杯的杯蓋和茶杯;用B和b分別表示第二個有蓋茶杯的杯蓋和茶杯、經(jīng)過搭配所能產(chǎn)生的結(jié)果如下:Aa、Ab、Ba、Bb.所以顏色搭配正確的概率是.故答案為:.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.17、2【解題分析】

將PA+PB轉(zhuǎn)化為PA+PC的值即可求出最小值.【題目詳解】解:E,F分別是底邊AD,BC的中點,四邊形ABCD是等腰梯形,B點關(guān)于EF的對稱點C點,AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【題目點撥】求PA+PB的最小值,PA+PB不能直接求,可考慮轉(zhuǎn)化PA+PC的值,從而找出其最小值求解.三、解答題(共7小題,滿分69分)18、(1)50;(2)①6;②1【解題分析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)和線段垂直平分線的性質(zhì)即可得到結(jié)論;(2)①根據(jù)線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì)可得AM=BM,然后求出△MBC的周長=AC+BC,再代入數(shù)據(jù)進行計算即可得解;②當(dāng)點P與M重合時,△PBC周長的值最小,于是得到結(jié)論.試題解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分線交AB于點N,∴∠ANM=90°,∴∠NMA=50°.故答案為50;(2)①∵MN是AB的垂直平分線,∴AM=BM,∴△MBC的周長=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周長是1,∴BC=1﹣8=6;②當(dāng)點P與M重合時,△PBC周長的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P與M重合時,PA+PC=AC,此時PB+PC最小,∴△PBC周長的最小值=AC+BC=8+6=1.19、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當(dāng)點D運動到AB中點位置時四邊形CDBF為正方形.【解題分析】分析:(1)根據(jù)平移的性質(zhì)得到DF∥AC,所以由平行線的性質(zhì)、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數(shù)關(guān)系式;(2)不能為正方形,添加條件:AC=BC時,點D運動到AB中點時,四邊形CDBF為正方形;當(dāng)D運動到AB中點時,四邊形CDBF是菱形,根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據(jù)有一內(nèi)角為直角的菱形是正方形來添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當(dāng)點D運動到AB中點位置時四邊形CDBF為正方形.∵∠ACB=∠DFE=90°,D是AB的中點∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四邊形CDBF是菱形;∵AC=BC,D是AB的中點.∴CD⊥AB即∠CDB=90°∵四邊形CDBF為菱形,∴四邊形CDBF是正方形.點睛:本題是幾何變換綜合題型,主要考查了平移變換的性質(zhì),勾股定理,正方形的判定,菱形的判定與性質(zhì)以及直角三角形斜邊上的中線.(2)難度稍大,根據(jù)三角形斜邊上的中線推知CD=BD=BF=BE是解題的關(guān)鍵.20、(1)詳見解析;(1).【解題分析】

(1)以點M為頂點,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB為等腰為等腰直角三角形,根據(jù)勾股定理求出OA的長,即可求出AM的值.【題目詳解】(1)作圖如圖所示;(1)由題知△AOB為等腰Rt△AOB,且OB=1,所以,AO=OB=1又M為OA的中點,所以,AM=1=【題目點撥】本題考查了尺規(guī)作圖,等腰直角三角形的判定,勾股定理等知識,熟練掌握作一個角等于已知角是解(1)的關(guān)鍵,證明△AOB為等腰為等腰直角三角形是解(1)的關(guān)鍵.21、見解析【解題分析】

根據(jù)角平分線的定義可得∠ABF=∠CBF,由已知條件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根據(jù)余角的性質(zhì)可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可證得結(jié)論.【題目詳解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【題目點撥】本題考查了等腰三角形的判定、直角三角形的性質(zhì),根據(jù)余角的性質(zhì)證得∠AFB=∠BED是解題的關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論