版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省上饒市2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知為銳角,為鈍角,,則()A. B.C. D.2.已知角的終邊經(jīng)過點,則的值為A. B.C. D.3.已知,,則A. B.C. D.4.已知是定義在R上的單調(diào)函數(shù),滿足,且,若,則a與b的關(guān)系是A. B.C. D.5.已知,,,則的大小關(guān)系A(chǔ). B.C. D.6.已知函數(shù)的圖像是連續(xù)的,根據(jù)如下對應(yīng)值表:x1234567239-711-5-12-26函數(shù)在區(qū)間上的零點至少有()A.5個 B.4個C.3個 D.2個7.直線L將圓平分,且與直線平行,則直線L的方程是A.BC.D.8.已知函數(shù),若關(guān)于的方程有四個不同的實數(shù)解,且,則的取值范圍是()A. B.C. D.9.設(shè),,若,則ab的最小值是()A.5 B.9C.16 D.2510.若,則()A. B.-3C. D.3二、填空題:本大題共6小題,每小題5分,共30分。11.已知,求________12.若數(shù)據(jù)的方差為3,則數(shù)據(jù)的方差為__________13.等腰直角△ABC中,AB=BC=1,M為AC的中點,沿BM把△ABC折成二面角,折后A與C的距離為1,則二面角C—BM—A的大小為_____________.14.在中,已知是x的方程的兩個實根,則________15.在空間直角坐標(biāo)系中,一點到三個坐標(biāo)軸的距離都是1,則該點到原點的距離是______答案】16.化簡求值(1)化簡(2)已知:,求值三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.(1)求證:DE平面ABC;(2)求證:B1C⊥平面BDE.18.計算:(1);(2)19.某地區(qū)每年各個月份的月平均最高氣溫近似地滿足周期性規(guī)律,因此第個月的月平均最高氣溫可近似地用函數(shù)來刻畫,其中正整數(shù)表示月份且,例如表示月份,和是正整數(shù),,.統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份的月平均最高氣溫基本相同,月份的月平均最高氣溫為攝氏度,是一年中月平均最高氣溫最低的月份,隨后逐月遞增直到月份達到最高為攝氏度.(1)求的解析式;(2)某植物在月平均最高氣溫低于攝氏度的環(huán)境中才可生存,求一年中該植物在該地區(qū)可生存的月份數(shù).20.已知.(1)在直角坐標(biāo)系中用“五點畫圖法”畫出一個周期內(nèi)的圖象.(要求列表、描點)(2)求函數(shù)的最小正周期、對稱中心、對稱軸方程.21.計算下列各式的值.(1);(2).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用平方關(guān)系和兩角和的余弦展開式計算可得答案.【詳解】因為為銳角,為鈍角,,所以,,則.故選:C.2、C【解析】因為點在單位圓上,又在角的終邊上,所以;則;故選C.3、C【解析】由已知可得,故選C考點:集合的基本運算4、A【解析】由題意,設(shè),則,又由,求得,得t值,確定函數(shù)的解析式,據(jù)此分析可得,即,又由,利用換底公式,求得,結(jié)合對數(shù)的運算性質(zhì)分析可得答案【詳解】根據(jù)題意,是定義在R上的單調(diào)函數(shù),滿足,則為常數(shù),設(shè),則,又由,即,則有,解可得,則,若,即,則,若,必有,則有,又由,則,解可得,即,所以,故選A【點睛】本題主要考查了函數(shù)的單調(diào)性的應(yīng)用,以及對數(shù)的運算性質(zhì)的應(yīng)用,其中解答中根據(jù)題意,設(shè),求得實數(shù)的值,確定出函數(shù)的解析式,再利用對數(shù)的運算性質(zhì)求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,以及換元思想的應(yīng)用,屬于中檔試題5、D【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出【詳解】∵0<a=0.71.3<1,b=30.2>1,c=log0.25<0,∴c<a<b故選D【點睛】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題6、C【解析】利用零點存在性定理即可求解.【詳解】函數(shù)的圖像是連續(xù)的,;;,所以在、,之間一定有零點,即函數(shù)在區(qū)間上的零點至少有3個.故選:C7、C【解析】圓的圓心坐標(biāo),直線L將圓平分,所以直線L過圓的圓心,又因為與直線平行,所以可設(shè)直線L的方程為,將代入可得所以直線L的方程為即,所以選C考點:求直線方程8、D【解析】畫出函數(shù)的圖象,根據(jù)對稱性和對數(shù)函數(shù)的圖象和性質(zhì)即可求出【詳解】可畫函數(shù)圖象如下所示若關(guān)于的方程有四個不同的實數(shù)解,且,當(dāng)時解得或,關(guān)于直線對稱,則,令函數(shù),則函數(shù)在上單調(diào)遞增,故當(dāng)時故當(dāng)時所以即故選:【點睛】本題考查函數(shù)方程思想,對數(shù)函數(shù)的性質(zhì),數(shù)形結(jié)合是解答本題的關(guān)鍵,屬于難題.9、D【解析】結(jié)合基本不等式來求得的最小值.【詳解】,,,,當(dāng)且僅當(dāng)時等號成立,由.故選:D10、B【解析】利用同角三角函數(shù)關(guān)系式中的商關(guān)系進行求解即可.【詳解】由,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由條件利用同角三角函數(shù)的基本關(guān)系求得和的值,再利用兩角和差的三角公式求得的值【詳解】∵,∴,,,∴,∴故答案為:12、12【解析】所求方差為,填13、【解析】分別計算出的長度,然后結(jié)合二面角的求法,找出二面角,即可.【詳解】結(jié)合題意可知,所以,而發(fā)現(xiàn)所以,結(jié)合二面角找法:如果兩平面內(nèi)兩直線分別垂直兩平面交線,則該兩直線的夾角即為所求二面角,故為所求的二面角,為【點睛】本道題目考查了二面角的求法,尋求二面角方法:兩直線分別垂直兩平面交線,則該兩直線的夾角即為所求二面角14、##【解析】根據(jù)根與系數(shù)關(guān)系可得,,再由三角形內(nèi)角和的性質(zhì)及和角正切公式求,即可得其大小.【詳解】由題設(shè),,,又,且,∴.故答案為:.15、【解析】設(shè)出該點的坐標(biāo),根據(jù)題意列方程組,從而求得該點到原點的距離【詳解】設(shè)該點的坐標(biāo)是(x,y,z),∵該點到三個坐標(biāo)軸的距離都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴該點到原點的距離是故答案為【點睛】本題考查了空間中點的坐標(biāo)與應(yīng)用問題,是基礎(chǔ)題16、(1)(2)【解析】(1)利用誘導(dǎo)公式化簡即可;(2)先進行弦化切,把代入即可求解.【小問1詳解】.【小問2詳解】因為,所以.所以.又,所以.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明過程見解析;(2)證明過程見解析.【解析】(1)根據(jù)面面平行的判定定理,結(jié)合線面平行的判定定理、面面平行的性質(zhì)進行證明即可;(2)根據(jù)正三棱柱的幾何性質(zhì),結(jié)合面面垂直的性質(zhì)定理、線面垂直的判定定理、面面平行的性質(zhì)定理進行證明即可.【小問1詳解】設(shè)G是CC1的中點,連接,因為E為B1C的中點,所以,而,所以,因為平面ABC,平面ABC,所以平面ABC,同理可證平面ABC,因為平面,且,所以面平面ABC,而平面,所以DE平面ABC;【小問2詳解】設(shè)是的中點,連接,因為E為B1C的中點,所以,而,所以,由(1)可知:面平面ABC,平面平面,平面平面,因此,在正三棱柱ABC-A1B1C1中,平面平面ABC,而平面平面ABC,因為ABC是正三角形,是的中點,所以,因此平面,而平面,因此,而,所以,因為正三棱柱ABC-A1B1C1中棱長都相等,所以,而E分別為B1C的中點,所以,而平面BDE,,所以B1C⊥平面BDE.18、(1);(2).【解析】(1)根據(jù)指數(shù)冪的運算法則,以及根式與指數(shù)冪的互化公式,直接計算,即可得出結(jié)果;(2)根據(jù)對數(shù)的運算法則,直接計算,即可得出結(jié)果.【詳解】(1)原式=(2)原式==19、(1),,為正整數(shù)(2)一年中該植物在該地區(qū)可生存的月份數(shù)是【解析】(1)先利用月平均氣溫最低、最高的月份求出周期和及值,再利用最低氣溫和最高氣溫求出、值,即得到所求函數(shù)的解析式;(2)先判定函數(shù)的單調(diào)性,再代值確定符合要求的月份即可求解.【小問1詳解】解:因為月份的月平均最高氣溫最低,月份的月平均最高氣溫最高,所以最小正周期.所以.所以,.因為,所以.因為月份的月平均最高氣溫為攝氏度,月份的月平均最高氣溫為攝氏度,所以,.所以,.所以的解析式是,,為正整數(shù).【小問2詳解】解:因為,,為正整數(shù).所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.因為某植物在月平均最高氣溫低于攝氏度的環(huán)境中才可生存,且,,所以該植物在1月份,2月份,3月份可生存.又,所以該植物在11月份,12月份也可生存.即一年中該植物在該地區(qū)可生存的月份數(shù)是.20、(1)見解析;(2)見解析【解析】(1)列表、描點即可用五點畫圖法作出函數(shù)圖像;(2)結(jié)合
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 民宿建設(shè)施工合同
- 建筑投資拆除施工合同
- 個人時間管理的優(yōu)化方案計劃
- 秋天的懷念教案錦集五篇
- 高三學(xué)生百日沖刺發(fā)言稿參考范文
- DB21-T 4050-2024 衛(wèi)星導(dǎo)航定位基準(zhǔn)站網(wǎng)數(shù)據(jù)處理及服務(wù)規(guī)范
- 2022《新時代-新思想-新青年》征文5篇
- 會計實習(xí)心得體會13篇
- 初二生物個人教學(xué)工作計劃
- 2024年企事業(yè)單位食堂承包經(jīng)營服務(wù)協(xié)議
- 血液透析的醫(yī)療質(zhì)量管理與持續(xù)改進
- 鉻安全周知卡、職業(yè)危害告知卡、理化特性表
- 部編小語必讀整本書《西游記》主要情節(jié)賞析
- 工程保修方案和措施三篇
- 新探索研究生英語(基礎(chǔ)級)讀寫教程參考答案Language-focus
- 辦公室工作手冊
- 質(zhì)量管理體系成熟度評估表
- 污水處理廠臭氣治理方案范本
- 大型中央空調(diào)系統(tǒng)設(shè)計方案
- 血透室對深靜脈導(dǎo)管感染率高要因分析品管圈魚骨圖對策擬定
- PHP編程基礎(chǔ)與實例教程第3版PPT完整全套教學(xué)課件
評論
0/150
提交評論