新高考數(shù)學(xué)一輪復(fù)習(xí)知識點(diǎn)總結(jié)與題型精練專題07 基本初等函數(shù)(含解析)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識點(diǎn)總結(jié)與題型精練專題07 基本初等函數(shù)(含解析)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識點(diǎn)總結(jié)與題型精練專題07 基本初等函數(shù)(含解析)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識點(diǎn)總結(jié)與題型精練專題07 基本初等函數(shù)(含解析)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識點(diǎn)總結(jié)與題型精練專題07 基本初等函數(shù)(含解析)_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題07基本初等函數(shù)【考綱要求】1、掌握二次函數(shù)的圖象與性質(zhì),會求二次函數(shù)的最值(值域)、單調(diào)區(qū)間.2、了解指數(shù)函數(shù)模型的實(shí)際背景,理解有理數(shù)指數(shù)冪的含義,了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算.3、理解指數(shù)函數(shù)的概念及其單調(diào)性,掌握指數(shù)函數(shù)圖象通過的特殊點(diǎn),知道指數(shù)函數(shù)是重要的函數(shù)模型.4、理解對數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);了解對數(shù)在簡化運(yùn)算中的作用.5、理解對數(shù)函數(shù)的概念及其單調(diào)性,掌握對數(shù)函數(shù)圖象通過的特殊點(diǎn),知道對數(shù)函數(shù)是重要的函數(shù)模型.一、二次函數(shù)【考點(diǎn)總結(jié)】1.二次函數(shù)(1)二次函數(shù)解析式的三種形式①一般式:f(x)=ax2+bx+c(a≠0).②頂點(diǎn)式:f(x)=a(x-m)2+n(a≠0).③零點(diǎn)式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函數(shù)的圖象和性質(zhì)解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)圖象定義域(-∞,+∞)(-∞,+∞)值域eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(4ac-b2,4a),+∞))eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,\f(4ac-b2,4a)))單調(diào)性在eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上單調(diào)遞減;在eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上單調(diào)遞增在eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上單調(diào)遞增;在eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上單調(diào)遞減對稱性函數(shù)的圖象關(guān)于x=-eq\f(b,2a)對稱二、冪函數(shù)【思維導(dǎo)圖】【考點(diǎn)總結(jié)】1.冪函數(shù)(1)定義:形如y=xα(α∈R)的函數(shù)稱為冪函數(shù),其中底數(shù)x是自變量,α為常數(shù).常見的五類冪函數(shù)為y=x,y=x2,y=x3,y=xeq\s\up6(\f(1,2)),y=x-1.(2)五種冪函數(shù)的圖象(3)性質(zhì)①冪函數(shù)在(0,+∞)上都有定義;②當(dāng)α>0時,冪函數(shù)的圖象都過點(diǎn)(1,1)和(0,0),且在(0,+∞)上單調(diào)遞增;③當(dāng)α<0時,冪函數(shù)的圖象都過點(diǎn)(1,1),且在(0,+∞)上單調(diào)遞減.三、指數(shù)與指數(shù)函數(shù)【思維導(dǎo)圖】【考點(diǎn)總結(jié)】1.根式(1)根式的概念①若xn=a,則x叫做a的n次方根,其中n>1且n∈N*.式子eq\r(n,a)叫做根式,這里n叫做根指數(shù),a叫做被開方數(shù).②a的n次方根的表示:xn=a?eq\b\lc\{(\a\vs4\al\co1(x=\r(n,a),當(dāng)n為奇數(shù)且n∈N*,n>1時,,x=±\r(n,a),當(dāng)n為偶數(shù)且n∈N*時.))(2)根式的性質(zhì)①(eq\r(n,a))n=a(n∈N*,且n>1);②eq\r(n,an)=eq\b\lc\{(\a\vs4\al\co1(a,n為奇數(shù),,|a|=\b\lc\{(\a\vs4\al\co1(a,a≥0,,-a,a<0,))n為偶數(shù).))2.有理數(shù)指數(shù)冪(1)冪的有關(guān)概念①正分?jǐn)?shù)指數(shù)冪:aeq\s\up6(\f(m,n))=eq\r(n,am)(a>0,m,n∈N*,且n>1);②負(fù)分?jǐn)?shù)指數(shù)冪:a-eq\s\up6(\f(m,n))=eq\f(1,a\s\up6(\f(m,n)))=eq\f(1,\r(n,am))(a>0,m,n∈N*,且n>1);③0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪無意義.(2)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)①aras=ar+s(a>0,r,s∈Q);②(ar)s=ars(a>0,r,s∈Q);③(ab)r=arbr(a>0,b>0,r∈Q).3.指數(shù)函數(shù)的圖象與性質(zhì)y=ax(a>0且a≠1)a>10<a<1圖象定義域R值域(0,+∞)性質(zhì)過定點(diǎn)(0,1)當(dāng)x>0時,y>1;當(dāng)x<0時,0<y<1當(dāng)x>0時,0<y<1;當(dāng)x<0時,y>1在R上是增函數(shù)在R上是減函數(shù)四、對數(shù)與對數(shù)函數(shù)【考點(diǎn)總結(jié)】1.對數(shù)概念如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底數(shù)N的對數(shù),記作x=logaN,其中a叫做對數(shù)的底數(shù),N叫做真數(shù),logaN叫做對數(shù)式性質(zhì)對數(shù)式與指數(shù)式的互化:ax=N?x=logaN(a>0,且a≠1)loga1=0,logaa=1,alogaN=N(a>0,且a≠1)運(yùn)算法則loga(M·N)=logaM+logaNa>0,且a≠1,M>0,N>0logaeq\f(M,N)=logaM-logaNlogaMn=nlogaM(n∈R)換底公式logab=eq\f(logcb,logca)(a>0,且a≠1,c>0,且c≠1,b>0)2.對數(shù)函數(shù)的圖象與性質(zhì)a>10<a<1圖象續(xù)表a>10<a<1性質(zhì)定義域:(0,+∞)值域:R過定點(diǎn)(1,0)當(dāng)x>1時,y>0當(dāng)0<x<1時,y<0當(dāng)x>1時,y<0當(dāng)0<x<1時,y>0在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)3.反函數(shù)指數(shù)函數(shù)y=ax與對數(shù)函數(shù)y=logax互為反函數(shù),它們的圖象關(guān)于直線y=x對稱.【題型匯編】題型一:二次函數(shù)的概念題型二:二次函數(shù)的圖象與性質(zhì)題型三:冪函數(shù)的圖象與性質(zhì)題型四:指數(shù)函數(shù)的圖象與性質(zhì)題型五:對數(shù)函數(shù)的圖象與性質(zhì)【題型講解】題型一:二次函數(shù)的概念一、單選題1.(2022·上海松江·二模)已知正方形SKIPIF1<0的邊長為4,點(diǎn)SKIPIF1<0、SKIPIF1<0分別在邊SKIPIF1<0、SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,若點(diǎn)SKIPIF1<0在正方形SKIPIF1<0的邊上,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】建立平面直角坐標(biāo)系,利用向量的數(shù)量積運(yùn)算及二次函數(shù)求值域即可得解.【詳解】如圖,建立平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0上時,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0上時,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,知SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0上時,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0上時,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0.綜上可得,SKIPIF1<0,故選:C2.(2022·北京·北大附中三模)已知半徑為SKIPIF1<0的圓SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,且與直線SKIPIF1<0相切,則其圓心到直線SKIPIF1<0距離的最小值為(

)A.1 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【解析】【分析】先求出得圓心SKIPIF1<0的軌跡方程,再利用點(diǎn)到直線的距離公式表示出距離,最后根據(jù)二次函數(shù)的最值求解方法可求得答案.【詳解】依題意,設(shè)圓SKIPIF1<0的圓心SKIPIF1<0,動點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離等于到直線SKIPIF1<0的距離,根據(jù)拋物線的定義可得圓心SKIPIF1<0的軌跡方程為SKIPIF1<0,設(shè)圓心SKIPIF1<0到直線SKIPIF1<0距離為SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0故選:B方法二:可以設(shè)與直線SKIPIF1<0平行的拋物線的切線方程,聯(lián)立方程,利用判別式等于零,得到切線方程,再利用平行線的距離公式得解;方法三:在第一象限分析問題,轉(zhuǎn)化為求函數(shù)SKIPIF1<0的切線與直線SKIPIF1<0平行,再利用平行線的距離公式得解.3.(2022·江西南昌·三模(理))已知SKIPIF1<0的內(nèi)角SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所對的邊分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0分別為線段SKIPIF1<0,SKIPIF1<0上的動點(diǎn),SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)已知條件運(yùn)用正弦定理求出SKIPIF1<0的長,根據(jù)SKIPIF1<0設(shè)出邊的關(guān)系,再利用余弦定理表示出SKIPIF1<0,從函數(shù)的角度求其最值.【詳解】依題意,如圖所示,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,由正弦定理得,SKIPIF1<0,又SKIPIF1<0,解得:SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由余弦定理得,SKIPIF1<0SKIPIF1<0SKIPIF1<0,對于二次函數(shù)SKIPIF1<0開口向上,對稱軸SKIPIF1<0SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.4.(2022·北京·二模)如圖,已知正方體SKIPIF1<0的棱長為1,則線段SKIPIF1<0上的動點(diǎn)P到直線SKIPIF1<0的距離的最小值為(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】利用坐標(biāo)法,設(shè)SKIPIF1<0,可得動點(diǎn)P到直線SKIPIF1<0的距離為SKIPIF1<0SKIPIF1<0,然后利用二次函數(shù)的性質(zhì)即得.【詳解】如圖建立空間直角坐標(biāo)系,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,∴動點(diǎn)P到直線SKIPIF1<0的距離為SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時取等號,即線段SKIPIF1<0上的動點(diǎn)P到直線SKIPIF1<0的距離的最小值為SKIPIF1<0.故選:D.5.(2022·江西·上饒市第一中學(xué)二模(文))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】解不等式得集合A,求二次函數(shù)值域得集合B,然后由集合的交集運(yùn)算可得.【詳解】由SKIPIF1<0解得SKIPIF1<0,即SKIPIF1<0,易知SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0.故選:A6.(2022·北京市第十二中學(xué)三模)若函數(shù)SKIPIF1<0的值域?yàn)镽,則a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】由SKIPIF1<0時,SKIPIF1<0,由題意,當(dāng)SKIPIF1<0時,SKIPIF1<0,對SKIPIF1<0分SKIPIF1<0和SKIPIF1<0兩種情況討論即可求解.【詳解】解:由SKIPIF1<0時,SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0的值域?yàn)镽,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,分兩種情況討論:①當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,所以只需SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0,所以只需SKIPIF1<0,顯然成立,所以SKIPIF1<0.綜上,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.7.(2022·四川·三模(理))設(shè)函數(shù)SKIPIF1<0的定義城為R,且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,若存在SKIPIF1<0時,使SKIPIF1<0,則k的最大值為(

).A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】先根據(jù)SKIPIF1<0得到從SKIPIF1<0開始,SKIPIF1<0每右移1個單位,圖像就會向上移1個單位,然后確定函數(shù)SKIPIF1<0的SKIPIF1<0由小到大,SKIPIF1<0第一次取到SKIPIF1<0時,SKIPIF1<0的范圍,進(jìn)而可得該范圍內(nèi)函數(shù)SKIPIF1<0的解析式,令SKIPIF1<0,求出SKIPIF1<0,進(jìn)而可得k的最大值.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0由SKIPIF1<0得SKIPIF1<0,即從SKIPIF1<0開始,SKIPIF1<0每右移1個單位,圖像就會向上移1個單位,當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,故當(dāng)函數(shù)SKIPIF1<0的SKIPIF1<0由小到大,SKIPIF1<0第一次取到SKIPIF1<0時,SKIPIF1<0又當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,若存在SKIPIF1<0時,使SKIPIF1<0,則必有SKIPIF1<0,所以k的最大值為SKIPIF1<0.故選:D.8.(2022·安徽·淮南第一中學(xué)一模(理))已知雙曲線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左、右焦點(diǎn)分別是SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,若P是該雙曲線右支上一點(diǎn),且滿足SKIPIF1<0,則SKIPIF1<0面積的最大值是(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)已知條件,結(jié)合雙曲線的定義求出SKIPIF1<0與SKIPIF1<0,然后在SKIPIF1<0中,利用余弦定理求出SKIPIF1<0,再根據(jù)面積公式及二次函數(shù)的知識即可求解.【詳解】解:因?yàn)镻是該雙曲線右支上一點(diǎn),所以由雙曲線的定義有SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0面積的最大值是SKIPIF1<0,故選:A.9.(2022·安徽淮北·一模(理))已知SKIPIF1<0是橢圓SKIPIF1<0的右焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,直線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0為C上的動點(diǎn),則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】由題可得橢圓SKIPIF1<0,進(jìn)而可得SKIPIF1<0,利用向量數(shù)量積的坐標(biāo)表示可得SKIPIF1<0SKIPIF1<0,再結(jié)合條件及二次函數(shù)的性質(zhì)即求.【詳解】由題可得SKIPIF1<0,∴SKIPIF1<0,即橢圓SKIPIF1<0,∴SKIPIF1<0,直線SKIPIF1<0方程為SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0有最小值為SKIPIF1<0.故選:C.10.(2022·四川巴中·一模(理))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】求出集合SKIPIF1<0中SKIPIF1<0的范圍,與集合SKIPIF1<0取交集【詳解】集合SKIPIF1<0中,根據(jù)SKIPIF1<0得:SKIPIF1<0,所以集合SKIPIF1<0,集合SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0故選:B二、多選題1.(2022·重慶·一模)已知SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0的最大值為SKIPIF1<0 B.SKIPIF1<0的最大值為SKIPIF1<0C.SKIPIF1<0的最小值為SKIPIF1<0 D.SKIPIF1<0的最大值為SKIPIF1<0【答案】BC【解析】【分析】利用基本不等式直接判斷A;利用基本不等式求得SKIPIF1<0的最大值可判斷B;利用基本不等式“1”的代換可判斷C;利用二次函數(shù)的性質(zhì)可判斷D;【詳解】SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0對于A,利用基本不等式得SKIPIF1<0,化簡得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最大值為SKIPIF1<0,故A錯誤;對于B,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最大值為SKIPIF1<0,故B正確;對于C,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0,故C正確;對于D,SKIPIF1<0SKIPIF1<0利用二次函數(shù)的性質(zhì)知,當(dāng)SKIPIF1<0時,函數(shù)單調(diào)遞減;當(dāng)SKIPIF1<0時,函數(shù)單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,故D錯誤;故選:BC題型二:二次函數(shù)的圖象與性質(zhì)一、單選題1.(2022·上海浦東新·二模)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,現(xiàn)有如下兩個結(jié)論:①對于任意的實(shí)數(shù)SKIPIF1<0,存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0;②存在實(shí)數(shù)SKIPIF1<0,對于任意的SKIPIF1<0,都有SKIPIF1<0;則(

)A.①②均正確 B.①②均不正確C.①正確,②不正確 D.①不正確,②正確【答案】C【解析】【分析】對①,根據(jù)SKIPIF1<0,SKIPIF1<0的幾何意義,判斷得出SKIPIF1<0與SKIPIF1<0一定有兩個交點(diǎn)分析即可對②,通過化簡SKIPIF1<0,將題意轉(zhuǎn)換為:存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0在SKIPIF1<0上為減函數(shù),再分析出當(dāng)SKIPIF1<0時函數(shù)有增區(qū)間,推出矛盾即可【詳解】對①,SKIPIF1<0的幾何意義為SKIPIF1<0與SKIPIF1<0兩點(diǎn)間的斜率,同理SKIPIF1<0的幾何意義為SKIPIF1<0與SKIPIF1<0兩點(diǎn)間的斜率.數(shù)形結(jié)合可得,當(dāng)SKIPIF1<0時,存在SKIPIF1<0;當(dāng)SKIPIF1<0時,存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0成立.即對于任意的實(shí)數(shù)SKIPIF1<0,存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,故①正確;對②,若存在實(shí)數(shù)SKIPIF1<0,對于任意的SKIPIF1<0,都有SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0.即存在實(shí)數(shù)SKIPIF1<0,對于任意的SKIPIF1<0,SKIPIF1<0恒成立.設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0為減函數(shù).故原題意可轉(zhuǎn)化為:存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0在SKIPIF1<0上為減函數(shù).因?yàn)楫?dāng)SKIPIF1<0時,SKIPIF1<0,因?yàn)镾KIPIF1<0對稱軸為SKIPIF1<0,故當(dāng)SKIPIF1<0時SKIPIF1<0一定為增函數(shù),故不存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0在SKIPIF1<0上為減函數(shù).故②錯誤故選:C2.(2022·遼寧·三模)函數(shù)SKIPIF1<0的最大值為(

)A.2 B.3 C.4 D.5【答案】B【解析】【分析】利用三角函數(shù)的平方關(guān)系將SKIPIF1<0化為SKIPIF1<0,配方后結(jié)合二次函數(shù)知識,求得答案.【詳解】SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值,且最大值為3,故選:B3.(2022·江西鷹潭·二模(理))已知函數(shù)SKIPIF1<0的極大值點(diǎn)SKIPIF1<0,極小值點(diǎn)SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】求出SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0,由當(dāng)SKIPIF1<0時取得極大值,當(dāng)SKIPIF1<0時取得極小值,可得SKIPIF1<0、SKIPIF1<0是方程SKIPIF1<0的兩個根,根據(jù)一元二次方程根的分布可以得到參數(shù)SKIPIF1<0、SKIPIF1<0滿足的不等式組,畫出其表示的平面區(qū)域,根據(jù)SKIPIF1<0的幾何意義即可求解【詳解】SKIPIF1<0又因?yàn)楫?dāng)SKIPIF1<0時取得極大值,當(dāng)SKIPIF1<0時取得極小值,可得SKIPIF1<0、SKIPIF1<0是方程SKIPIF1<0的兩個根,根據(jù)一元二次方程根的分布可得SKIPIF1<0即:SKIPIF1<0作出該不等式組表示的平面區(qū)域如圖中陰影部分所示(不包括邊界),可求出邊界交點(diǎn)坐標(biāo)分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0表示平面區(qū)域內(nèi)的點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0連線的斜率,由圖可知SKIPIF1<0SKIPIF1<0,根據(jù)傾斜角的變化,可得SKIPIF1<0故選:B4.(2022·北京昌平·二模)已知函數(shù)SKIPIF1<0,則關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】由二次函數(shù)的性質(zhì)判斷SKIPIF1<0區(qū)間單調(diào)性,根據(jù)解析式知SKIPIF1<0恒過SKIPIF1<0且SKIPIF1<0,進(jìn)而確定區(qū)間值域,再由對數(shù)函數(shù)性質(zhì)求SKIPIF1<0的對應(yīng)區(qū)間值域,即可得不等式解集.【詳解】由題設(shè),SKIPIF1<0對稱軸為SKIPIF1<0且圖象開口向下,則SKIPIF1<0在SKIPIF1<0上遞增,SKIPIF1<0上遞減,由SKIPIF1<0,即SKIPIF1<0恒過SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0上SKIPIF1<0,SKIPIF1<0上SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0上遞增,且SKIPIF1<0上SKIPIF1<0,SKIPIF1<0上SKIPIF1<0,所以SKIPIF1<0的解集為SKIPIF1<0.故選:C5.(2022·江蘇·華羅庚中學(xué)三模)若函數(shù)SKIPIF1<0的定義域和值域的交集為空集,則正數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】首先得到函數(shù)的定義域,再分析當(dāng)SKIPIF1<0時SKIPIF1<0的取值,即可得到SKIPIF1<0,再對SKIPIF1<0時分SKIPIF1<0和SKIPIF1<0兩種情況討論,求出此時SKIPIF1<0的取值,即可得到SKIPIF1<0的值域,從而得到不等式,解得即可;【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0;要使定義域和值域的交集為空集,顯然SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,若SKIPIF1<0則SKIPIF1<0,此時顯然不滿足定義域和值域的交集為空集,若SKIPIF1<0時SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,此時SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0故選:B6.(2022·寧夏·銀川一中三模(文))已知SKIPIF1<0的最小值為2,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】注意觀察SKIPIF1<0時,SKIPIF1<0,所以讓SKIPIF1<0時,SKIPIF1<0恒成立即可,根據(jù)參變分離和換元方法即可得解.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,又因?yàn)镾KIPIF1<0的最小值為2,,所以需要當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,原式轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0恒成立,SKIPIF1<0是二次函數(shù),開口向下,對稱軸為直線SKIPIF1<0,所以在SKIPIF1<0上SKIPIF1<0最大值為SKIPIF1<0,所以SKIPIF1<0,故選:D.7.(2022·北京·一模)已知直線SKIPIF1<0是圓SKIPIF1<0的一條對稱軸,則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】A【解析】【分析】圓心必然在直線l上,得到SKIPIF1<0的關(guān)系式,再考慮求最大值.【詳解】由于直線l是圓的對稱軸,所以圓的圓心必定在直線l上,將圓的一般方程轉(zhuǎn)變?yōu)闃?biāo)準(zhǔn)方程:SKIPIF1<0,圓心為SKIPIF1<0,將圓心坐標(biāo)代入直線l的方程得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0是開口向下,以SKIPIF1<0

為對稱軸的拋物線,所以SKIPIF1<0,故選:A.8.(2022·山東濟(jì)南·二模)若二次函數(shù)SKIPIF1<0,滿足SKIPIF1<0,則下列不等式成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】首先根據(jù)SKIPIF1<0,判斷出二次函數(shù)的對稱軸,然后再根據(jù)二次函數(shù)的單調(diào)性即可得出答案.【詳解】因?yàn)镾KIPIF1<0,所以二次函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:B.二、多選題1.(2022·福建莆田·三模)已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,則下列結(jié)論正確的是(

)A.若SKIPIF1<0有3個不同的零點(diǎn),則a的取值范圍是SKIPIF1<0B.若SKIPIF1<0有4個不同的零點(diǎn),則a的取值范圍是SKIPIF1<0C.若SKIPIF1<0有4個不同的零點(diǎn)SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0有4個不同的零點(diǎn)SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0【答案】BCD【解析】【分析】根據(jù)題意,將問題轉(zhuǎn)化為函數(shù)SKIPIF1<0與SKIPIF1<0圖像交點(diǎn)個數(shù)問題,進(jìn)而數(shù)形結(jié)合求解即可得答案.【詳解】解:令SKIPIF1<0得SKIPIF1<0,即所以SKIPIF1<0零點(diǎn)個數(shù)為函數(shù)SKIPIF1<0與SKIPIF1<0圖像交點(diǎn)個數(shù),故,作出函數(shù)SKIPIF1<0圖像如圖,由圖可知,SKIPIF1<0有3個不同的零點(diǎn),則a的取值范圍是SKIPIF1<0,故A選項(xiàng)錯誤;SKIPIF1<0有4個不同的零點(diǎn),則a的取值范圍是SKIPIF1<0,故B選項(xiàng)正確;SKIPIF1<0有4個不同的零點(diǎn)SKIPIF1<0,此時SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0,故C選項(xiàng)正確;由C選項(xiàng)可知SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0有4個不同的零點(diǎn),a的取值范圍是SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故D選項(xiàng)正確.故選:BCD題型三:冪函數(shù)的圖象與性質(zhì)一、單選題1.(2022·山東·德州市教育科學(xué)研究院三模)已知對數(shù)函數(shù)SKIPIF1<0的圖像經(jīng)過點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)對數(shù)函數(shù)可以解得SKIPIF1<0,SKIPIF1<0,再結(jié)合中間值法比較大?。驹斀狻吭O(shè)SKIPIF1<0,由題意可得:SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0故選:C.2.(2022·江西·二模(文))已知SKIPIF1<0,則a,b,c的大小關(guān)系是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】利用對數(shù)函數(shù)、三角函數(shù)、冪函數(shù)的單調(diào)性比較大小即可.【詳解】SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0是單調(diào)遞增函數(shù),所以SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0是單調(diào)遞增函數(shù),所以SKIPIF1<0所以SKIPIF1<0,故選:C.3.(2022·四川眉山·三模(文))下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】對于A、B:作出SKIPIF1<0和SKIPIF1<0在第一象限的圖像判斷出:在SKIPIF1<0上,有SKIPIF1<0,在SKIPIF1<0上,有SKIPIF1<0,在SKIPIF1<0上,有SKIPIF1<0.即可判斷A、B;對于C:判斷出SKIPIF1<0,SKIPIF1<0,即可判斷;對于D:判斷出SKIPIF1<0,SKIPIF1<0,即可判斷.【詳解】對于A、B:作出SKIPIF1<0和SKIPIF1<0在第一象限的圖像如圖所示:其中SKIPIF1<0的圖像用虛線表示,SKIPIF1<0的圖像用虛線表示.可得,在SKIPIF1<0上,有SKIPIF1<0,在SKIPIF1<0上,有SKIPIF1<0,在SKIPIF1<0上,有SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故A正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故B錯誤;對于C:SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.故C錯誤;對于D:SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.故D錯誤.故選:A4.(2022·北京·二模)下列函數(shù)中,與函數(shù)SKIPIF1<0的奇偶性相同,且在SKIPIF1<0上有相同單調(diào)性的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)指對函數(shù)的性質(zhì)判斷A、B,由正弦函數(shù)性質(zhì)判斷C,對于D有SKIPIF1<0,即可判斷奇偶性和SKIPIF1<0單調(diào)性.【詳解】由SKIPIF1<0為奇函數(shù)且在SKIPIF1<0上遞增,A、B:SKIPIF1<0、SKIPIF1<0非奇非偶函數(shù),排除;C:SKIPIF1<0為奇函數(shù),但在SKIPIF1<0上不單調(diào),排除;D:SKIPIF1<0,顯然SKIPIF1<0且定義域關(guān)于原點(diǎn)對稱,在SKIPIF1<0上遞增,滿足.故選:D5.(2022·江西·南昌市八一中學(xué)三模(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】結(jié)合對數(shù)函數(shù)、指數(shù)函數(shù)和冪函數(shù)的單調(diào)性直接比較大小即可.【詳解】依題意,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.故選:C.6.(2022·廣東·二模)定義在SKIPIF1<0上的下列函數(shù)中,既是奇函數(shù),又是增函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】由正弦函數(shù),指數(shù)函數(shù)和冪函數(shù)的性質(zhì)對各個選項(xiàng)進(jìn)行分析判斷即可得到答案.【詳解】A.SKIPIF1<0,由正弦函數(shù)的性質(zhì)可知SKIPIF1<0在SKIPIF1<0上不為增函數(shù),故排除;B.SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故排除;C.SKIPIF1<0,故函數(shù)在SKIPIF1<0上為偶函數(shù),故排除;D.SKIPIF1<0,SKIPIF1<0,故函數(shù)在SKIPIF1<0上為奇函數(shù),且由冪函數(shù)的性質(zhì)知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,滿足題意;故選:D7.(2022·內(nèi)蒙古包頭·二模(文))下列函數(shù)中是減函數(shù)的為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)二次函數(shù)、正比例函數(shù)、指數(shù)函數(shù)、冪函數(shù)的單調(diào)性逐一判斷即可.【詳解】A:因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以該函數(shù)不是減函數(shù),不符合題意;B:因?yàn)楹瘮?shù)SKIPIF1<0是增函數(shù),所以不符合題意;C:因?yàn)楹瘮?shù)SKIPIF1<0是增函數(shù),所以不符合題意;D:因?yàn)楹瘮?shù)SKIPIF1<0是減函數(shù),所以符合題意,故選:D8.(2022·安徽·蕪湖一中三模(文))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)單調(diào)性,即可求解.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:A.二、多選題1.(2022·山東威?!と#┤鬝KIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】【分析】根據(jù)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性分別可判斷A、B、C,結(jié)合C和對數(shù)換底公式即可判斷D.【詳解】對于A,∵冪函數(shù)y=SKIPIF1<0在SKIPIF1<0單調(diào)遞增,∴根據(jù)SKIPIF1<0可知SKIPIF1<0,故A錯誤;對于B,∵指數(shù)函數(shù)y=SKIPIF1<0在R上單調(diào)遞減,∴根據(jù)SKIPIF1<0可知SKIPIF1<0,故B正確;對于C,∵對數(shù)函數(shù)y=SKIPIF1<0(SKIPIF1<0)在SKIPIF1<0上單調(diào)遞減,∴根據(jù)SKIPIF1<0可知SKIPIF1<0,故C正確;對于D,由C可知SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故D錯誤.故選:BC.2.(2022·山東濱州·二模)若實(shí)數(shù)a,b滿足SKIPIF1<0,則下列結(jié)論中正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【解析】【分析】根據(jù)給定條件,求出a,b的關(guān)系,再利用不等式性質(zhì)判斷A,B;指對數(shù)函數(shù)、冪函數(shù)單調(diào)性分析判斷C,D作答.【詳解】因SKIPIF1<0,則SKIPIF1<0,于是有SKIPIF1<0,A不正確;SKIPIF1<0,即SKIPIF1<0,B正確;由SKIPIF1<0得:SKIPIF1<0,因此,SKIPIF1<0,C正確;因SKIPIF1<0,函數(shù)SKIPIF1<0在R上單調(diào)遞減,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,D正確.故選:BCD題型四:指數(shù)的圖象與性質(zhì)一、單選題1.(2022·青?!ご笸ɑ刈逋磷遄灾慰h教學(xué)研究室三模(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則正數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】由已知求出m,n,p,再借助商值比較法及“媒介”數(shù)推理判斷作答.【詳解】由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,因此,SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,于是得SKIPIF1<0,所以正數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為SKIPIF1<0.故選:A2.(2022·青?!ご笸ɑ刈逋磷遄灾慰h教學(xué)研究室三模(文))若函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.10 C.4 D.2【答案】B【解析】【分析】首先得到SKIPIF1<0的周期,再根據(jù)函數(shù)的周期性計(jì)算可得;【詳解】解:由SKIPIF1<0,得SKIPIF1<0,∴函數(shù)SKIPIF1<0是周期函數(shù),且4是它的一個周期,又當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0;故選:B.3.(2022·山東臨沂·三模)已知SKIPIF1<0,則a,b,c的大小關(guān)系是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】分別化簡SKIPIF1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論