2021年云南中考數(shù)學(xué)模擬卷之預(yù)測卷含答案_第1頁
2021年云南中考數(shù)學(xué)模擬卷之預(yù)測卷含答案_第2頁
2021年云南中考數(shù)學(xué)模擬卷之預(yù)測卷含答案_第3頁
2021年云南中考數(shù)學(xué)模擬卷之預(yù)測卷含答案_第4頁
2021年云南中考數(shù)學(xué)模擬卷之預(yù)測卷含答案_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021年云南中考數(shù)學(xué)模擬卷之預(yù)測卷

一、選擇題

1.計算(-2)+(-3)的值是()

A.1B.-1C.-5D.5

2.下列幾何體中,主視圖相同的是()

①②③④

A.①②B.①③C.①④D.②④

3.已知一次函數(shù)y=kx+2經(jīng)過點(1,0),則k的值

是().

A-4B.;C,-2D.2

4.如圖,下列圖案是我國幾家銀行的標(biāo)志,其中軸對

稱圖形有().

?c??

A.4個B.3個C.2個D.1個

5.地球的表面積約為511000000km2,用科學(xué)記數(shù)法

表示正確的是()

A.5.HX1010km2B.5.llX108km2

C.51.lX107km2D.0.511X109km2

6.下列說法正確的是()

A.“打開電視機(jī),它正在播廣告”是必然事件

B.“一個不透明的袋中裝有8個紅球,從中摸出一

個球是紅球”是隨機(jī)事件

C.為了了解我市今年夏季家電市場中空調(diào)的質(zhì)量,

不宜采用普查的調(diào)查方式進(jìn)行

D.銷售某種品牌的涼鞋,銷售商最感興趣的是該品

牌涼鞋的尺碼的平均數(shù)

7.用大小相等的小正方形按一定規(guī)律拼成下列圖形,

則第n個圖形中小正方形的個數(shù)是()

第1個圖形第2個圖形第3個圖形

A.2n+lB.?2-iC.n2+2nD.5n-2

8.如圖,點A在以BC為直徑的。。內(nèi),且AB二AC,以

點A為圓心,AC長為半徑作弧,得到扇形ABC,剪下

扇形ABC圍成一個圓錐(AB和AC重合),若N

BAC二120。,BC二2正,則這個圓錐底面圓的半徑是

C.V2D.6

第n卷(非選擇題)

二、填空題

9.若分式,在實數(shù)范圍內(nèi)有意義,則x的取值范圍

x-2

10.因式分解:-8ax2+16axy-8ay2=.

11.如圖,已知aABC為直角三角形,ZC=90°,若沿

圖中虛線剪去NC,則N1+N2等于.

12.已知關(guān)于x的方程一+工+利=0的一個根是2,則m=

13.如圖,點A,B在反比例函數(shù)y=-(x>0)的圖

X

象上,點A在點B的左側(cè),且0A=0B,點A關(guān)于y

軸的對稱點為A,,點B關(guān)于x軸的對稱點為B,,

連接A,B,分別交0A,0B于點D,C,若四邊形

ABCD的面積為5,則點A的坐標(biāo)為.

14.在矩形46⑦中,A廬4,除3,點,在邊4?上.

若將△刃〃沿以折疊,使點A落在矩形ABCD的對

角線上,則"的長為

三、解答題

15.先化簡,再求值:(罟+1),其中x=痣+1.

16.如圖,點A、C、D、Bg點共線,且

AC=BD,ZA=ZB,ZADE=ZBCF,求證:DE=CF.

17.某學(xué)校為了解學(xué)生體能情況,規(guī)定參加測試的每

名學(xué)生從“立定跳遠(yuǎn)”,“耐久跑”,“擲實心

球”,“引體向上”四個項目中隨機(jī)抽取兩項作為測

試項目.

(1)小明同學(xué)恰好抽到“立定跳遠(yuǎn)”,“耐久跑”

兩項的概率是;

(2)據(jù)統(tǒng)計,初三(3)班共12名男生參加了“立

定跳遠(yuǎn)”的測試,他們的分?jǐn)?shù)如下:95、100、90、

82、90、65、89、74、75、93、92、85.

①這組數(shù)據(jù)的眾數(shù)是—,中位數(shù)是;

②若將不低于90分的成績評為優(yōu)秀,請你估計初三

年級參加“立定跳遠(yuǎn)”的400名男生中成績?yōu)閮?yōu)秀的

學(xué)生約為多少人?

18.隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強(qiáng),

越來越多的人喜歡騎自行車出行.某自行車廠生產(chǎn)的

某型號自行車去年銷售總額為8萬元.今年該型號自

行車每輛售價預(yù)計比去年降低200元.若該型號車的

銷售數(shù)量與去年相同,那么今年的銷售總額將比去年

減少10%,求該型號自行車去年每輛售價多少元?

19.如圖.電路圖上有四個開關(guān)A、B、C、D和一個小

燈泡,閉合開關(guān)D或同時閉合開關(guān)A,B,C都可使小

燈泡發(fā)光.

(1)任意閉合其中一個開關(guān),則小燈泡發(fā)光的概率

等于.

(2)任意閉合其中兩個開關(guān),請用畫樹狀圖或列表

的方法求出小燈泡發(fā)光的概率.

20.有這樣一個問題:探究函數(shù)k一斤+N的圖象與性

質(zhì).

小軍根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)k-炳+國的圖象

與性質(zhì)進(jìn)行了探究.

下面是小軍的探究過程,請補(bǔ)充完整:

(1)函數(shù)廠々至+|x|的自變量X的取值范圍

是;

(2)下表是y與x的幾組對應(yīng)值:

X-2-1.9-1.5-1-0.501234…1

y21.600.800-0.72-1.41-0.370.761.55

-

在平面直角坐標(biāo)系xOy中,描出了以上表中各對對

應(yīng)值為坐標(biāo)的點,根據(jù)描出的點,畫出該函數(shù)的圖

象;

3-

??2??

1?°▲??6A1

-2T.12345X

-3■

(3)觀察圖象,函數(shù)的最小值是;

(4)進(jìn)一步探究,結(jié)合函數(shù)的圖象,寫出該函數(shù)的

一條性質(zhì)(函數(shù)最小值除外):

21.一汽車租賃公司擁有某種型號的汽車100輛.公

司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出

的車輛數(shù)(y)有如下關(guān)系:

X3000320035004000

y100969080

(1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)

或二次函數(shù)的有關(guān)知識求出每月租出的車輛數(shù)y

(輛)與每輛車的月租金x(元)之間的關(guān)系式.

(2)已知租出的車每輛每月需要維護(hù)費(fèi)150元,未

租出的車每輛每月需要維護(hù)費(fèi)50元.用含x

(xN3000)的代數(shù)式填表:

租出的車輛數(shù)未租出的車輛數(shù)

——

租出每輛車的月收益所有未租出的車輛每月的維護(hù)費(fèi)

——

(3)若該公司的經(jīng)理將每輛車的月租金定為4050

元,能使公司獲得最大月收益,請求出公司的最大月

收益是多少元?

22.如圖,將矩形ABCD沿AF折疊,使點D落在BC邊

的點E處,過點E作EG〃CD交虹于點G,連接DG.

(1)求證:四邊形EFDG是麥形;

(2)求證:EG2=-AFGF;

2

(3)若AG=6,EG",求BE的長.

23.如圖,已知二次函數(shù)y=ax2+bx+c(a^O)的圖象經(jīng)

過點A(1,0),B(2,0),C(0,-2),直線

x=m(m>2)與x軸交于點D.

(1)求二次函數(shù)的解析式;

(2)在直線x=m(m>2)上有一點E(點E在第四

象限),使得E、D、B為頂點的三角形與以

A、0、C為頂點的三角形相似,求E點坐標(biāo)(用含

m的代數(shù)式表示);

(3)在(2)成立的條件下,拋物線上是否存在一點

F,使得四邊形ABEF為平行四邊形?若存在,請求出

F點的坐標(biāo);若不存在,請說明理由.

參數(shù)答案

1.C

【解析】1.

試題分析:根據(jù)有理數(shù)的加法,即可解得(-2)+

(-3)=-5,

故選:C.

考點:有理數(shù)的加法

2.B

【解析】2.

試題分析:圓柱的主視圖是長方形,圓錐的主視圖是

三角形,長方體的主視圖是長方形,球的主視圖是

圓,

故選:B.

考點:簡單幾何體的三視圖.

3.C.

【解析】3.

試題分析:直接把點(1,0)代入一次函數(shù)

y=kx+2,求出k的值即可.?一次函數(shù)y=kx+2的圖

象經(jīng)過點(1,0),???0=k+2,解得k=-2.

故選:C.

考點:一次函數(shù)圖象上點的坐標(biāo)特征.

4.B.

【解析】4.

試題分析:根據(jù)軸對稱圖形的概念對各圖形分析判斷

后即可得解.(1)是軸對稱圖形;(2)不是軸對稱

圖形;(3)是軸對稱圖形;(4)是軸對稱圖形;所

以,是軸對稱圖形的共3個.

故選:B.

考點:軸對稱圖形.軸對稱圖形.

5.B

【解析】5.

試題分析:511000000=5.11X108.

故選:B.

考點:科學(xué)記數(shù)法.

6.C

【解析】6.

試題分析:根據(jù)隨機(jī)事件、必然事件的定義,可判斷

A、B,根據(jù)不同調(diào)查方式的特點,可判斷C,根據(jù)數(shù)

據(jù)的集中趨勢,可判斷DA、是隨機(jī)事件,

故A錯誤;B、是必然事件,故B錯誤;

C、調(diào)查對象大,適宜用抽查的方式,不宜用普查,

故C正確;D、銷售商最感興趣的是眾數(shù),故D錯

誤;

考點:(1)、隨機(jī)事件;(2)、全面調(diào)查與抽樣調(diào)查;

(3)、統(tǒng)計量的選擇.

7.C.

【解析】7.

試題分析:??,第1個圖形中,小正方形的個數(shù)是:

22-1=3;

第2個圖形中,小正方形的個數(shù)是:32一1二8;

第3個圖形中,小正方形的個數(shù)是:4一1二15;

???

???第n個圖形中,小正方形的個數(shù)是:

(n+l)2-1=〃2+2〃;

故選C.

考點:規(guī)律型:圖形的變化類.

8.B.

【解析】8.

試題分析:如圖,連接AO,NBAC=120°,BC=26,

N0AC=60°,可得00月,即可求得AC=2,設(shè)圓錐的

120萬x24

底面半徑為r,則2nr=180二3n,

2

考點:圓錐的計算.

9.#2

【解析】9.試題解析:根據(jù)分式有意義的條件得:X-

2Ho

即:XH2

10.-8a(x-y)2

【角軍析】10.-8ax2+16axy-8ay2

=-8a(x2-2xy+y2)

=-8a(x-y)2;

2

故答案是:-8a(x-y)O

11.270°

【解析】ll.VZC=90°.\ZA+ZB=90o

.,.Z1+Z2-3600-(ZA+ZB)=270°

故答案為:270°

12.-6

【解析】12.把x=2代入x2+x+m=O/|^4+2+/77=0,

:.m=-6

13.(1,2)

2

【解析】13.???反比例函數(shù)y=:,關(guān)于直線y二x對

稱,OA=OB,

:.A、B關(guān)于直線y二x對稱,

設(shè)點A的坐標(biāo)為(m,-),則點B的坐標(biāo)為

m

(,,m),則點A'的坐標(biāo)為(-m,,),點B'

mm

的坐標(biāo)為(L-m),

m

,直線OB的解析式為y=m2x,直線AB'的解析式

為y=-x+L-m,

m

1-m2

由產(chǎn)r+丁加,解得{小2)

y=m2x

y=^r

???c[4^,嗎曰],根據(jù)對稱性可知

m(m2+l)加2+1

D「加(1-1—〃/~|

L9Z,7777J,

帆~+1m\in+\\

如圖,設(shè)AB'交x軸于F,交y軸于E,連接

AA',作DN_LOF于N,CM±OE于M,DN交

CM于G.

.?.ZOEF=ZOFE=45°,

???NA'EA=90°,AE=&m,

在RtACDG中,?.?DG=CG,CD=&CG=

r1-zn2

L722ij>

m[m"+1)zn+1

同理可得,AB=O(--m),

m

???四邊形ADCB的面積為g

整理得專二D=解得病」,?.?m>0,

蘇+154

?1

??m二一,

2

AA(1,2).

2

點睛:反比例函數(shù)y=-關(guān)于直線y=x對稱,因為

X

OA=OB,所以A、B關(guān)于直線y二x對稱,可以設(shè)點

A的坐標(biāo)為(m,1),則點B的坐標(biāo)為(L

mm

m),則點A,的坐標(biāo)為(-m,,),點B'的坐標(biāo)

m

為(,,-m),求出直線OB、AB'的解析式,解

m

方程組求出點C的坐標(biāo),求出線段CD、AB,列出

方程求出m即可解決問題.

14.3或2

24

【解析】14.試題分析:如圖①所示,當(dāng)V落在對角

線BD上時,設(shè)AP的長度為x,則AP二A'P=x,PB=4-

x,在4ABD和AA'BP中,因為NA'BP=NABD,

NBA'P二NBAD=90°,所以△ABDs/\ArBP,根據(jù)相

似三角形的性質(zhì)可得絲=",在RtAABD中,

ADBD

BD=JA/+AEP=5,貝I」可得巳=三,解得x=3;

352

如圖②所示,當(dāng)〃落在對角線AC上時,根據(jù)折疊

的性質(zhì),可得DP±AC,設(shè)AP=x,在4DAP和4ABC

中,因為NADP+NAPD=90°,ZBAC+ZAPD=90°,可

得NBAC二NADP,又因為NBAC=NABC,所以

△DAP-AABC,根據(jù)相似三角形的性質(zhì)可得",

BCAB

即以3,解得x=2.

344

故答案為:[或]

24

圖②

1.V2

?'x-\'~T

【解析】15.

試題分析:首先將分式的分子和分母進(jìn)行因式分解,

將括號里面的分式進(jìn)行通分,然后將除法改成乘法進(jìn)

行約分化簡,最后將x的值代入化簡后的式子進(jìn)行計

算.

試題解析:原式

-------7+(+)=-------7+=----------------=

(x-l)-x-\x—1(x-l)~x-1(x-1)2xx-1

]二叵

當(dāng)X二/+1時,原式二白

X—1V2+1-1~2

考點:分式的化簡求值

16.證明見解析.

【解析】16.試題分析:根據(jù)條件可以求出AD=BC,

再證明△AEDZ/iBFC,由全等三角形的性質(zhì)就可以得

出結(jié)論.

試題解析:VAC=DB,

二?AC+CD=DB+CD,即AD=BC,

在ZkAED和4BFC中,

ZA=ZB

(ZE=ZF

AD=BC

.,.△AED^ABFC.

/.DE=CF.

【點睛】本題考查了線段的數(shù)量關(guān)系,全等三角形的

判定及性質(zhì)的運(yùn)用,解答時證明4AED之4BFC是解

答本題的關(guān)鍵.

17.(1)1(2)①90,89.5②200人

6

【解析】17.試題分析:(1)列表得出所有等可能的

情況數(shù),找出恰好抽至『'立定跳遠(yuǎn)〃,“耐久跑〃兩項的

情況數(shù),即可求出所求的概率;(2)①根據(jù)已知數(shù)

據(jù)確定出眾數(shù)與中位數(shù)即可;②求出成績不低于90

分占的百分比,乘以400即可得到結(jié)果.

試題解析:

(1)1;(2)①90,89.5;②400x9=200人.

612

18.去年該型號自行車每輛售價為2000元.

【解析】18.試題分析:設(shè)去年該型號自行車每輛售

價x元,根據(jù)題意列出方程即可.

試題解析:解:設(shè)去年該型號自行車每輛售價x元,

則今年每輛售價為(x-200)元.

由題意,得

80000_80000(1-10%)

xx-200’

解得:x=2000.

經(jīng)檢驗,x=2000是原方程的根.

答:去年該型號自行車每輛售價為2000元.

19.(1)!;(2)1.

42

【解析】19.

試題分析:(1)根據(jù)概率公式直接填即可;

(2)依據(jù)題意先用列表法或畫樹狀圖法分析所有等

可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概

率.

試題解析:(1)有4個開關(guān),只有D開關(guān)一個閉合

小燈發(fā)亮,

所以任意閉合其中一個開關(guān),則小燈泡發(fā)光的概率是

一1?

4

故答案為:9

(2)畫樹狀圖如右圖:

結(jié)果任意閉合其中兩個開關(guān)的情況共有12種,其中

能使小燈泡發(fā)光的情況有6種,所以小燈泡發(fā)光的概

率是

2

ABCD

小八不小

BCDACDABDARC

考點:列表法與樹狀圖法;概率公式.

20.(1)x>-2;

(2)該函數(shù)的圖象如圖所示;

(3)-V2;

(4)該函數(shù)的其它性質(zhì):當(dāng)-2。<0時,y隨X的增大

而減小.

【解析】20.試題分析:(1)根據(jù)二次根式有意義的

條件得出自變量的取值范圍即可;(2)通過描點,

用平滑的曲線連接個點,畫出圖形即可;(3)根據(jù)

圖像可以看到當(dāng)x=0時,函數(shù)取的最小值;(4)根

據(jù)函數(shù)圖像可以發(fā)現(xiàn)函數(shù)的性質(zhì),可以找出一條即可.

試題解析:(1)x>-2;

(2)該函數(shù)的圖象如圖所示;

(3)-72;

(4)該函數(shù)的其它性質(zhì):當(dāng)-2Vx<0時,y隨x的增大

而減?。?/p>

(答案不唯一,符合函數(shù)性質(zhì)即可寫出一條即可)

21.(1)y與x間的函數(shù)關(guān)系是口=—5口+/60;

(2)填表見解析;

(3)當(dāng)每輛車的月租金為4050元時,公司獲得最大

月收益307050元.

【解析】21.試題分析:(1)判斷出y與x的函數(shù)關(guān)

系為一次函數(shù)關(guān)系,再根據(jù)待定系數(shù)法求出函數(shù)解析

式;(2)根據(jù)題意可用代數(shù)式求出出租車的輛數(shù)和

未出租車的輛數(shù)即可.(3)租出的車的利潤減去未

租出車的維護(hù)費(fèi),即為公司最大月收益.

解:(1)由表格數(shù)據(jù)可知y與x是一次函數(shù)關(guān)系,

設(shè)其解析式為y=kx+b.

由題意得:笠。。-;=96,解之得:{”瑞

二.y與x間的函數(shù)關(guān)系是y=-高x+160.

(2)如下表:

一宗+/Mi。

租出的車輛數(shù)60未租出的車輛數(shù)

租出的車每輛的月所有未租出的車輛每月的維

x-150x-3000

收益護(hù)費(fèi)

(3)設(shè)租賃公司獲得的月收益為W元,依題意可

得:

W=(--x+160)(x-150)-(x-3000)

50

二(--x2+163x-24000)-(x-3000)

50

=-^x2+162x-21000

二-占(x-4050)2+307050

當(dāng)x=4050時,Wmax=307050,

即:當(dāng)每輛車的月租金為4050元時,公司獲得最大

月收益307050元.

22.(1)證明見解析;(2)證明見解析;(3)BE的

長為苧.

【解析】22.(1)先依據(jù)翻折的性質(zhì)和平行線的性質(zhì)

證明NDGF二NDFG,從而得到GD=DF,接下來依據(jù)翻

折的性質(zhì)可證明DG二GE二DF二EF;

(2)連接DE,交AF于點0.由菱形的性質(zhì)可知

GF±DE,0G=0F=lGF,接下來,證明△DOFsaADF,

2

由相似三角形的性質(zhì)可證明DF2-F0-AF,于是可得到

GE、AF、FG的數(shù)量關(guān)系;

(3)過點G作GHJ_DC,垂足為H.利用(2)的結(jié)論

可求得FG=4,然后再4ADF中依據(jù)勾股定理可求得

AD的長,然后再證明△FGHsaFAD,利用相似三角

形的性質(zhì)可求得GH的長,最后依據(jù)BE二AD-GH求解

即可.

解:(1)證明:VGE/7DF,

Z.ZEGF=ZDFG.

,/由翻折的性質(zhì)可知:GD=GE,DF=EF,

ZDGF-ZEGF,

Z.ZDGF=ZDFG.

???GD=DF.

???DG=GE=DF=EF.

???四邊形EFDG為菱形.

。1

(2)EG=2GF*AF.

理由:如圖1所示:連接DE,交AF于點0.

???四邊形EFDG為菱形,

1

Z.GF±DE,0G=0F=2GF.

VZD0F=ZADF=90°,ZOFD=ZDFA,

.?.△DOF^AADF.

DFFO

Z.AF=DF,BPDFo-FO*AF.

VF0=2GF,DF=EG,

1

.*.EGo=2GF*AF.

(3)如圖2所示:過點G作GH_LDC,垂足為H.

VEG2=2GF*AF,AG=6,EG=2在,

1c

Z.20=2FG(FG+6),整理得:FG2+6FG-40=0.

解得:FG=4,FG=-10(舍去).

「DF二GE二2旄,AF=10,

AD=7AF2-DFM^/5.

VGH±DC,AD±DC,

???GH〃AD.

/.△FGH^AFAD.

GH_FGGH4

AD=AF,BPW5=l0.

8^5

???GH=H

87512a

:.BE=AD-GH=4&-T=T-.

“點睛”本題考查的是四邊形與三角形的綜合應(yīng)用,

解題應(yīng)用了矩形的性質(zhì),菱形的性質(zhì)和判定、相似三

角形的判定和性質(zhì),掌握矩形的性質(zhì)定理和相似三角

形的判定定理、性質(zhì)定理是解題的關(guān)鍵.

23.(1)二次函數(shù)的解析式為y=-x?+3x-2;

⑵E點坐標(biāo)為E"m,芋),EzGn,4-2m);

(3)F點的坐標(biāo)為:件(2,-2),F2(4,-

24

6).

【解析】23.試題分析:

(1)已知拋物線經(jīng)過三個點,則可設(shè)拋物線的解析

式為一般式k加+灰+c,再將三個點的坐標(biāo)代入到一

般式中,得到三元一次方程組即可求解;

(2)匕40c與ABDE都是直角三角形,除直角外,

其它的對應(yīng)關(guān)系不確定,所以應(yīng)分兩類討論,由相似

三角形的對應(yīng)邊成比例求出E點的坐標(biāo);

(3)4B是兩個確定的點,E點的坐標(biāo)中含有m也

可看作是確定的點,則可根據(jù)三個點的坐標(biāo),確定第

四個點F的坐標(biāo),而點F在拋物線上,把尸點的坐標(biāo)

代入到拋物線中得到關(guān)于m的方程,則可求出點F

的坐標(biāo).

解:(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論