上海市虹口區(qū)復(fù)興高中2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第1頁
上海市虹口區(qū)復(fù)興高中2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第2頁
上海市虹口區(qū)復(fù)興高中2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第3頁
上海市虹口區(qū)復(fù)興高中2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第4頁
上海市虹口區(qū)復(fù)興高中2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海市虹口區(qū)復(fù)興高中2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一輛汽車做直線運(yùn)動(dòng),位移與時(shí)間的關(guān)系為,若汽車在時(shí)的瞬時(shí)速度為12,則()A. B.C.2 D.32.如圖,P為圓錐的頂點(diǎn),O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.3.已知雙曲線C:-=1的焦距為10,點(diǎn)P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=14.連續(xù)拋擲一枚均勻硬幣3次,事件“至少2次出現(xiàn)正面”的對(duì)立事件是()A.只有2次出現(xiàn)反面 B.至少2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面5.拋物線的準(zhǔn)線方程是,則a的值為()A.4 B.C. D.6.命題:“,”的否定形式為()A., B.,C., D.,7.在棱長為1的正方體中,為的中點(diǎn),則點(diǎn)到直線的距離為()A. B.1C. D.8.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進(jìn)微積分概念.在研究切線時(shí)認(rèn)識(shí)到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時(shí)它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)的導(dǎo)函數(shù),若,且對(duì),,且總有,則下列選項(xiàng)正確的是()A. B.C. D.9.如圖,橢圓的右焦點(diǎn)為,過與軸垂直的直線交橢圓于第一象限的點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,且,,則橢圓方程為()A. B.C. D.10.已知圓,直線,則直線l被圓C所截得的弦長的最小值為()A.2 B.3C.4 D.511.《周髀算經(jīng)》有這樣一個(gè)問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個(gè)節(jié)氣日影長減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個(gè)節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸12.雙曲線(,)的一條漸近線的傾斜角為,則離心率為()A. B.C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.2021年7月24日,在東京奧運(yùn)會(huì)女子10米氣步槍決賽中,中國選手楊倩以251.8環(huán)的總成績奪得金牌,為中國代表團(tuán)摘得本屆奧運(yùn)會(huì)首金.已知楊倩其中5次射擊命中的環(huán)數(shù)如下:10.8,10.6,10.6,10.7,9.8,則這組數(shù)據(jù)的方差為______14.已知數(shù)列滿足,則=________.15.設(shè)、為正數(shù),若,則的最小值是______,此時(shí)______.16.在一村莊正西方向處有一臺(tái)風(fēng)中心,它正向東北方向移動(dòng),移動(dòng)速度的大小為,距臺(tái)風(fēng)中心以內(nèi)的地區(qū)將受到影響,若臺(tái)風(fēng)中心的這種移動(dòng)趨勢(shì)不變,則村莊所在地大約有_______小時(shí)會(huì)受到臺(tái)風(fēng)的影響.(參考數(shù)據(jù):)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD為正方形,M、N、Q分別為AD、PD、BC的中點(diǎn)(1)證明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值18.(12分)如圖,在長方體中,,,,M為上一點(diǎn),且(1)求點(diǎn)到平面的距離;(2)求二面角的余弦值19.(12分)如圖,在四棱錐中,底面,底面是邊長為2的正方形,,F(xiàn),G分別是,的中點(diǎn)(1)求證:平面;(2)求平面與平面的夾角的大小20.(12分)新高考取消文理分科,采用選科模式,這賦予了學(xué)生充分的自由選擇權(quán).新高考地區(qū)某校為了解本校高一年級(jí)將來高考選考物理的情況,隨機(jī)選取了100名高一學(xué)生,將他們某次物理測(cè)試成績(滿分100分)按照,,,,分成5組,制成如圖所示的頻率分布直方圖.(1)求圖中的值并估計(jì)這100名學(xué)生本次物理測(cè)試成績的中位數(shù).(2)根據(jù)調(diào)查,本次物理測(cè)試成績不低于60分的學(xué)生,高考將選考物理科目;成績低于60分的學(xué)生,高考將不選考物理科目.按分層抽樣的方法從測(cè)試成績?cè)?,的學(xué)生中選取5人,再從這5人中任意選取2人,求這2人中至少有1人高考選考物理科目的概率.21.(12分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值22.(10分)如圖,在四棱錐中,四邊形為平行四邊形,且,,三角形為等腰直角三角形,且,.(1)若點(diǎn)為棱的中點(diǎn),證明:平面平面;(2)若平面平面,點(diǎn)為棱的中點(diǎn),求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可解得;【詳解】解:因?yàn)?,所以又汽車在時(shí)的瞬時(shí)速度為12,即即,解得故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)在物理中的應(yīng)用,屬于基礎(chǔ)題.2、B【解析】先求出,再利用向量的線性運(yùn)算和數(shù)量積計(jì)算求解.【詳解】解:由題得,,故選:B3、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點(diǎn)在的漸近線上,所以,聯(lián)立方程組可得,所以雙曲線的方程為考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程及簡(jiǎn)單的幾何性質(zhì)4、D【解析】根據(jù)對(duì)立事件的定義選擇【詳解】對(duì)立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對(duì)立事件為“有2次或3次出現(xiàn)反面”故選:D5、C【解析】先求得拋物線的標(biāo)準(zhǔn)方程,可得其準(zhǔn)線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標(biāo)準(zhǔn)方程為,準(zhǔn)線方程為,又準(zhǔn)線方程是,所以,所以.故選:C6、D【解析】根據(jù)含一個(gè)量詞的命題的否定方法直接得到結(jié)果.【詳解】因?yàn)槿Q命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.含一個(gè)量詞的命題的否定方法:修改量詞,否定結(jié)論.7、B【解析】建立空間直角坐標(biāo)系,利用空間向量點(diǎn)到直線的距離公式進(jìn)行求解即可【詳解】建立如圖所示的空間直角坐標(biāo)系,由已知,得,,,,,所以在上的投影為,所以點(diǎn)到直線的距離為故選:B8、D【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進(jìn)而判斷選項(xiàng).【詳解】由,得在上單調(diào)遞增,因?yàn)?,所以,故A不正確;對(duì),,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點(diǎn)處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點(diǎn)與點(diǎn)連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點(diǎn)睛】本題考查以數(shù)學(xué)文化為背景,導(dǎo)數(shù)的幾何意義,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題型.9、C【解析】連結(jié),設(shè),則,,由可求出,進(jìn)而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點(diǎn)為,連結(jié),由橢圓的對(duì)稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查了橢圓的標(biāo)準(zhǔn)方程求解及橢圓的簡(jiǎn)單幾何性質(zhì),在求解橢圓標(biāo)準(zhǔn)方程時(shí),關(guān)鍵是求解基本量,,.10、C【解析】直線l過定點(diǎn)D(1,1),當(dāng)時(shí),弦長最短.【詳解】由,圓心,半徑,,由,故直線l過定點(diǎn),∵,故D在圓C內(nèi)部,直線l始終與圓相交,當(dāng)時(shí),直線l被圓截得的弦長最短,,弦長=.故選:C.11、D【解析】結(jié)合等差數(shù)列知識(shí)求得正確答案.【詳解】設(shè)冬至日影長,公差為,則,所以立夏日影長丈,即四尺五寸.故選:D12、C【解析】根據(jù)雙曲線方程寫出漸近線方程,得出,進(jìn)而可求出雙曲線的離心率.【詳解】因?yàn)殡p曲線的漸近線方程為,又其中一條漸近線的傾斜角為,所以,則,所以該雙曲線離心率為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、128【解析】先求均值,再由方差公式計(jì)算【詳解】由已知,所以,故答案為:14、4【解析】根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)得,可得,即數(shù)列是以2為公比的等比數(shù)列,代入等比數(shù)列的通項(xiàng)公式化簡(jiǎn)可得值.【詳解】因?yàn)?,所以,即?shù)列是以2為公比的等比數(shù)列,所以.故答案為:4.【點(diǎn)睛】本題考查等比數(shù)列的定義和通項(xiàng)公式以及對(duì)數(shù)的運(yùn)算性質(zhì),熟練運(yùn)用相應(yīng)的公式即可,屬于基礎(chǔ)題.15、①.4②.【解析】巧用“1”改變目標(biāo)式子的結(jié)果,借助均值不等式求最值即可.【詳解】,當(dāng)且僅當(dāng)即,時(shí)等號(hào)成立.故答案為,【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用“1”的代換法和基本不等式,考查運(yùn)算能力,屬于中檔題16、4【解析】結(jié)合勾股定理求得正確答案.【詳解】如圖,設(shè)村莊為A,開始臺(tái)風(fēng)中心的位置為B,臺(tái)風(fēng)路徑為直線,因?yàn)辄c(diǎn)A到直線的距離為,∴村莊所在地受到臺(tái)風(fēng)影響的時(shí)間約為:(小時(shí)).故答案為:本卷包括必考題和選考題兩部分.第17題~第21題為必考題,每個(gè)試題考生都必須作答第22題~第23題為選考題,考生根據(jù)要求作答三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明過程見解析(2)【解析】(1)由線線平行證明線面平行;(2)建立空間直角坐標(biāo)系,利用空間向量進(jìn)行求解二面角的余弦值.【小問1詳解】因?yàn)镸,N是DA,PD的中點(diǎn),所以MN//AP,因?yàn)槠矫鍼AQ,平面PAQ,所以MN//平面PAQ因?yàn)樗倪呅蜛BCD為正方形,且Q為BC中點(diǎn),所以MA//CQ,且MA=CQ,所以四邊形MAQC為平行四邊形,所以CM//AQ,因?yàn)槠矫鍼AQ,平面PAQ,所以MC//平面PAQ,因?yàn)?,所以面PAQ//面MNC【小問2詳解】因?yàn)镻D⊥CD,PD⊥AD,AD⊥CD故以D為坐標(biāo)原點(diǎn),DA所在直線為x軸,DC所在直線為y軸,DP所在直線為z軸建立空間直角坐標(biāo)系,則,,,設(shè)平面NMC的法向量為,則,令得:,所以,平面NDC的法向量為,則,設(shè)二面角M-NC-D的大小為,顯然為銳角,則18、(1)(2)【解析】(1)以A為原點(diǎn),以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系,利用空間向量求解,(2)求出和的法向量,利用空間向量求解【小問1詳解】以A為原點(diǎn),以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系由,,,,所以,,,因此,,,設(shè)平面的法向量,則,,所以,取,則,,于是,所以點(diǎn)到平面的距離【小問2詳解】由,,設(shè)平面的法向量,則,,所以,取,則,,于是,由(1)知平面的法向量為,記二面角的平面角為,則,由圖可知二面角為銳角,所以所求二面角的余弦值為19、(1)證明見解析(2)【解析】(1)取中點(diǎn)連接,連接,證得四邊形為平行四邊形,,再證面,即可得到證明結(jié)果;(2)建立空間坐標(biāo)系,求面和面的法向量,即可得到兩個(gè)面的二面角的余弦值,進(jìn)而得到二面角大小.【小問1詳解】如上圖,取中點(diǎn)連接,連接,均為線段中點(diǎn),且,又G是的中點(diǎn),且且四邊形為平行四邊形為等腰直角三角形,為斜邊中點(diǎn),面,面面又面.【小問2詳解】建立如圖坐標(biāo)系,設(shè)面的法向量為設(shè)面的法向量為兩個(gè)法向量的夾角余弦值為:,由圖知兩個(gè)面的二面角為鈍角,故夾角為.20、(1),中位數(shù)為;(2).【解析】(1)由頻率和為1求參數(shù)a,根據(jù)直方圖及中位數(shù)性質(zhì)求中位數(shù)即可.(2)首先由分層抽樣原則求選取的5人在、的人數(shù)分布情況,再應(yīng)用列舉法求古典概型的概率即可.【小問1詳解】由圖知:,解得.學(xué)生成績?cè)诘念l率為;學(xué)生成績?cè)诘念l率為.設(shè)這100名學(xué)生本次物理測(cè)試成績的中位數(shù)為,則,解得,故估計(jì)這100名學(xué)生本次物理測(cè)試成績的中位數(shù)為.【小問2詳解】由(1)知,學(xué)生成績?cè)诘念l數(shù)為,學(xué)生成績?cè)诘念l數(shù)為.按分層抽樣的方法從中選取5人,則成績?cè)诘膶W(xué)生被抽取人,分別記為,,成績?cè)诘膶W(xué)生被抽取人,分別記為,,.從中任意選取2人,有,,,,,,,,,這10種選法,其中至少有1人高考選考物理科目的選法有,,,,,,,,這9種,∴這2人中至少有1人高考選考物理科目的概率.21、(1)證明見解析(2)【解析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題意建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo)和相關(guān)的向量,然后分別求出平面與平面的一個(gè)法向量,最后求出平面與平面夾角的余弦值【小問1詳解】四邊形是正方形,可得:又平面,平面則有:平面四邊形是梯形,可得:又平面,平面則有:平面又故平面平面【小問2詳解】依題意知兩兩垂直,故以為原點(diǎn),所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系.則有:,,,可得:,,設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面與平面的夾角為,則故平面與平面夾角的余弦值為22、(1)證明見解析(2)【解析】(1)先證明,,進(jìn)而證明平面,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論