上海交大南洋中學2024屆高二數(shù)學第一學期期末復習檢測試題含解析_第1頁
上海交大南洋中學2024屆高二數(shù)學第一學期期末復習檢測試題含解析_第2頁
上海交大南洋中學2024屆高二數(shù)學第一學期期末復習檢測試題含解析_第3頁
上海交大南洋中學2024屆高二數(shù)學第一學期期末復習檢測試題含解析_第4頁
上海交大南洋中學2024屆高二數(shù)學第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海交大南洋中學2024屆高二數(shù)學第一學期期末復習檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.2.若直線與直線垂直,則()A6 B.4C. D.3.為了防控新冠病毒肺炎疫情,某市疾控中心檢測人員對外來入市人員進行核酸檢測,人員甲、乙均被檢測.設(shè)命題為“甲核酸檢測結(jié)果為陰性”,命題為“乙核酸檢測結(jié)果為陰性”,則命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為()A. B.C. D.4.若,則下列不等式不能成立是()A. B.C. D.5.下列命題正確的是()A經(jīng)過三點確定一個平面B.經(jīng)過一條直線和一個點確定一個平面C.四邊形確定一個平面D.兩兩相交且不共點的三條直線確定一個平面6.某企業(yè)為節(jié)能減排,用萬元購進一臺新設(shè)備用于生產(chǎn).第一年需運營費用萬元,從第二年起,每年運營費用均比上一年增加萬元,該設(shè)備每年生產(chǎn)的收入均為萬元.設(shè)該設(shè)備使用了年后,年平均盈利額達到最大值(盈利額等于收入減去成本),則等于()A. B.C. D.7.圓的圓心和半徑分別是()A., B.,C., D.,8.當時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.9.圓與直線的位置關(guān)系為()A.相切 B.相離C.相交 D.無法確定10.已知雙曲線的對稱軸為坐標軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或11.設(shè)函數(shù),則()A.4 B.5C.6 D.712.已知兩圓相交于兩點,,兩圓圓心都在直線上,則值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是等差數(shù)列,,公差,為其前n項和,滿足,則當取得最大值時,______14.若點到點的距離比它到定直線的距離小1,則點滿足的方程為_____________15.函數(shù)的圖象在點處的切線的方程是______.16.在2021件產(chǎn)品中有10件次品,任意抽取3件,則抽到次品個數(shù)的數(shù)學期望的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)過點作圓的兩條切線,切點分別為A,B;(1)求直線AB的方程;(2)若M為圓上的一點,求面積的最大值18.(12分)人類社會正進入數(shù)字時代,網(wǎng)絡(luò)成為了必不可少的工具,智能手機也給我們的生活帶來了許多方便.但是這些方便、時尚的手機,卻也讓你的眼睛離健康越來越遠.為了了解手機對視力的影響程度,某研究小組在經(jīng)常使用手機的中學生中進行了隨機調(diào)查,并對結(jié)果進行了換算,統(tǒng)計了中學生一個月中平均每天使用手機的時間x(小時)和視力損傷指數(shù)的數(shù)據(jù)如下表:平均每天使用手機的時間x(小時)1234567視力損傷指數(shù)y25812151923(1)根據(jù)表中數(shù)據(jù),求y關(guān)于x的線性回歸方程.(2)該小組研究得知:視力的下降值t與視力損傷指數(shù)y滿足函數(shù)關(guān)系式,如果小明在一個月中平均每天使用9個小時手機,根據(jù)(1)中所建立的回歸方程估計小明視力的下降值(結(jié)果保留一位小數(shù)).參考公式及數(shù)據(jù):,..19.(12分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項公式;(2)已知數(shù)列的前項和為,求.20.(12分)已知等比數(shù)列的前項和為,,.數(shù)列的前項和為,且,(1)分別求數(shù)列和的通項公式;(2)若,為數(shù)列的前項和,是否存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列?若存在,求出所有滿足條件的,,的值;若不存在,說明理由21.(12分)已知等差數(shù)列滿足;正項等比數(shù)列滿足,,(1)求數(shù)列,的通項公式;(2)數(shù)列滿足,的前n項和為,求的最大值.22.(10分)已知,2,4,6中的三個數(shù)為等差數(shù)列的前三項,且100不在數(shù)列中,102在數(shù)列中.(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A2、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.3、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測結(jié)果為陰性”,則命題為“甲核酸檢測結(jié)果不是陰性”;命題為“乙核酸檢測結(jié)果為陰性”,則命題為“乙核酸檢測結(jié)果不是陰性”.故命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為.故選D.4、C【解析】利用不等式的性質(zhì)可判斷ABD,利用賦值法即可判斷C,如.【詳解】解:因為,所以,所以,,,故ABD正確;對于C,若,則,故C錯誤.故選:C.5、D【解析】由平面的基本性質(zhì)結(jié)合公理即可判斷.【詳解】對于A,過不在一條直線上三點才能確定一個平面,故A不正確;對于B,經(jīng)過一條直線和直線外一個點確定一個平面,故B不正確;對于C,空間四邊形不能確定一個平面,故C不正確;對于D,兩兩相交且不共點的三條直線確定一個平面,故D正確.故選:D6、D【解析】設(shè)該設(shè)備第年的營運費為萬元,利用為等差數(shù)列可求年平均盈利額,利用基本不等式可求其最大值.【詳解】設(shè)該設(shè)備第年的營運費為萬元,則數(shù)列是以2為首項,2為公差的等差數(shù)列,則,則該設(shè)備使用年的營運費用總和為,設(shè)第n年的盈利總額為,則,故年平均盈利額為,因為,當且僅當時,等號成立,故當時,年平均盈利額取得最大值4.故選:D.【點睛】本題考查等差數(shù)列在實際問題中的應(yīng)用,注意根據(jù)題設(shè)條件概括出數(shù)列的類型,另外用基本不等式求最值時注意檢驗等號成立的條件.7、D【解析】先化為標準方程,再求圓心半徑即可.【詳解】先化為標準方程可得,故圓心為,半徑為.故選:D.8、A【解析】設(shè),對實數(shù)的取值進行分類討論,求得,解不等式,綜合可得出實數(shù)的取值范圍.【詳解】設(shè),其中.①當時,即當時,函數(shù)在區(qū)間上單調(diào)遞增,則,解得,此時不存在;②當時,,解得;③當時,即當時,函數(shù)在區(qū)間上單調(diào)遞減,則,解得,此時不存在.綜上所述,實數(shù)的取值范圍是.故選:A.9、C【解析】先計算出直線恒過定點,而點在圓內(nèi),所以圓與直線相交.【詳解】直線可化為,所以恒過定點.把代入,有:,所以在圓內(nèi),所以圓與直線的位置關(guān)系為相交.故選:C10、B【解析】分雙曲線的焦點在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點在軸上,則有,則雙曲線的離心率為;若焦點在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點睛】本題考查雙曲線離心率的求解,在雙曲線的焦點位置不確定的情況下,要對雙曲線的焦點位置進行分類討論,考查計算能力,屬于基礎(chǔ)題.11、D【解析】求出函數(shù)的導數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.12、A【解析】由相交弦的性質(zhì),可得與直線垂直,且的中點在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標,進而可得中點的坐標,代入直線方程可得;進而將、相加可得答案【詳解】根據(jù)題意,由相交弦的性質(zhì),相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上;由與直線垂直,可得,解可得,則,故中點為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點睛】方法點睛:解答圓和圓的位置關(guān)系時,要注意利用平面幾何圓的知識來分析解答.二、填空題:本題共4小題,每小題5分,共20分。13、9或10【解析】等差數(shù)列通項公式的使用.【詳解】數(shù)列是等差數(shù)列,且,得,得,則有,又因為,公差,所以或10時,取得最大值故答案為:9或1014、【解析】根據(jù)拋物線的定義可得動點的軌跡方程【詳解】點到點的距離比它到直線的距離少1,所以點到點的距離與到直線的距離相等,所以其軌跡為拋物線,焦點為,準線為,所以方程為,故答案為:15、【解析】求導,求得,,根據(jù)直線的點斜式方程求得答案.【詳解】因為,,所以切線的斜率,切線方程是,即.故答案為:.16、【解析】設(shè)抽到的次品的個數(shù)為,則,求出對應(yīng)的概率即得解.【詳解】解:設(shè)抽到的次品的個數(shù)為,則,所以所以抽到次品個數(shù)的數(shù)學期望的值是故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求出以為直徑的圓的方程,結(jié)合已知圓的方程,將兩圓方程相減可求得兩圓公共弦所在直線方程;(2)求出圓上的點M到直線AB的距離的最大值,求出,利用三角形面積公式求得答案.【小問1詳解】圓的圓心坐標為,半徑為1,則的中點坐標為,,以為圓心,為直徑的圓的方程為,由,得①,由,得②,①②得:直線的方程為;【小問2詳解】圓心到直線的距離為故圓上的點M到直線的距離的最大值為,而,故面積的最大值為.18、(1)(2)0.3【解析】(1)由表格數(shù)據(jù)及參考公式即可求解;(2)由(1)中線性回歸方程計算小明的視力損傷指數(shù),再將代入視力的下降值t與視力損傷指數(shù)y滿足的函數(shù)關(guān)系式即可求解.【小問1詳解】解:由表格數(shù)據(jù)得:,,,,所以線性回歸方程為;【小問2詳解】解:小明的視力損傷指數(shù),所以,估計小明視力的下降值為0.3.19、(1)證明見詳解,(2)【解析】(1)由題意將原式化簡變形得到,可證明數(shù)列是等差數(shù)列,由等差數(shù)列的通項公式則可得,進而得到的通項公式;(2)由(1)把的通項公式代入,得到,利用乘公比錯位相減法求和即可.【小問1詳解】若,則,這與矛盾,,由已知得,,故數(shù)列是以為首項,2為公差的等差數(shù)列,,即.【小問2詳解】設(shè),則由(1)知,所以,,兩式相減,則,所以.20、(1),;(2)不存在,理由見解析.【解析】(1)利用數(shù)列為等比數(shù)列,將已知的等式利用首項和公比表示,得到一個方程組,求解即可得到首項和公比,結(jié)合等比數(shù)列的通項公式即可求出;將已知的等式變形,得到數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求出,再結(jié)合數(shù)列的第項與前項和之間的關(guān)系進行求解,即可得到;(2)先利用等比數(shù)列求和公式求出,從而得到的表達式,然后利用裂項相消求和法求出,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,利用等比中項、等差中項以及進行化簡變形,得到假設(shè)不成立,故可得到答案【詳解】(1)因為數(shù)列為等比數(shù)列,設(shè)首項為,公比為,由題意可知,所以,所以,由②可得,即,所以或2,因為,所以,所以,所以,由,可得,所以數(shù)列為等差數(shù)列,首項為,公差為1,故,則,當時,,當時,也適合上式,故(2)由,可得,所以,所以,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,則有,所以,則,即,因為,所以,即,所以,所以,則,所以,則,所以,即,所以,這與已知的,,互不相等矛盾,故不存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列【點睛】裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.21、(1),(2)8【解析】(1)利用已知的關(guān)系把替換成,再把兩式作差后整理即得通項公式,的通項公式可由已知條件建立基本量的方程求解.(2)由的通項公式可判斷,,,當時,所有正項的和即為的最大項的值.小問1詳解】,,兩式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論