版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北京市海淀區(qū)第二十中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在單位正方體中,以為原點(diǎn),,,為坐標(biāo)向量建立空間直角坐標(biāo)系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,2.將直線繞著原點(diǎn)逆時針旋轉(zhuǎn),得到新直線的斜率是()A. B.C. D.3.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知拋物線上的點(diǎn)到其準(zhǔn)線的距離為,則()A. B.C. D.5.過拋物線()的焦點(diǎn)作斜率大于的直線交拋物線于,兩點(diǎn)(在的上方),且與準(zhǔn)線交于點(diǎn),若,則A. B.C. D.6.直線關(guān)于直線對稱的直線方程為()A. B.C. D.7.已知雙曲線:的左、右焦點(diǎn)分別為,,過點(diǎn)且斜率為的直線與雙曲線在第二象限的交點(diǎn)為,若,則雙曲線的離心率是()A B.C. D.8.執(zhí)行如圖所示的程序框圖,輸出的s值為()A.8 B.9C.27 D.369.已知,,,若、、三個向量共面,則實(shí)數(shù)A3 B.5C.7 D.910.設(shè)函數(shù)的定義域?yàn)?,滿足,且當(dāng)時,.若對任意,都有,則的取值范圍是()A. B.C. D.11.某地為應(yīng)對極端天氣搶險救災(zāi),需調(diào)用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時之需,若x和y滿足約束條件則最多需調(diào)用卡車的數(shù)量為()A.7 B.9C.13 D.1412.已知雙曲線的右焦點(diǎn)為F,關(guān)于原點(diǎn)對稱的兩點(diǎn)A、B分別在雙曲線的左、右兩支上,,且點(diǎn)C在雙曲線上,則雙曲線的離心率為()A.2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓被直線平分,則值為__________14.已知是橢圓的兩個焦點(diǎn),點(diǎn)M在C上,則的最大值為_______15.已知空間向量,,,若,,共面,則實(shí)數(shù)___________.16.等差數(shù)列的公差,是其前n項(xiàng)和,給出下列命題:若,且,則和都是中的最大項(xiàng);給定n,對于一些,都有;存在使和同號;.其中正確命題的序號為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求函數(shù)在處的切線方程;(2)討論函數(shù)在上的單調(diào)性.18.(12分)如圖,在三棱錐中,,點(diǎn)P為線段MC上的點(diǎn)(1)若平面PAB,試確定點(diǎn)P的位置,并說明理由;(2)若,,,求三棱錐的體積19.(12分)如圖,底面是矩形的直棱柱中,;(1)求證:平面;(2)求直線與平面所成角的大??;20.(12分)已知斜率為1的直線交拋物線:()于,兩點(diǎn),且弦中點(diǎn)的縱坐標(biāo)為2.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)記點(diǎn),過點(diǎn)作兩條直線,分別交拋物線于,(,不同于點(diǎn))兩點(diǎn),且的平分線與軸垂直,求證:直線的斜率為定值.21.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點(diǎn).(1)證明:PO⊥平面ABC;(2)若點(diǎn)M在棱BC上,且,求平面MAP與平面CAP所成角的大小.22.(10分)雙曲線,離心率,虛軸長為2(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)的直線與雙曲線相交于兩點(diǎn),且為的中點(diǎn),求直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè)平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點(diǎn),,,為坐標(biāo)向量建立空間直角坐標(biāo)系,,0,,,1,,,1,,,1,,,0,,設(shè)平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.2、B【解析】由題意知直線的斜率為,設(shè)其傾斜角為,將直線繞著原點(diǎn)逆時針旋轉(zhuǎn),得到新直線的斜率為,化簡求值即可得到答案.【詳解】由知斜率為,設(shè)其傾斜角為,則,將直線繞著原點(diǎn)逆時針旋轉(zhuǎn),則故新直線的斜率是.故選:B.3、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時,數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.4、C【解析】首先根據(jù)拋物線的標(biāo)準(zhǔn)方程的形式,確定的值,再根據(jù)焦半徑公式求解.【詳解】,,因?yàn)辄c(diǎn)到的準(zhǔn)線的距離為,所以,得故選:C5、A【解析】分別過作準(zhǔn)線的垂線,垂足分別為,設(shè),則,,故選A.6、C【解析】先聯(lián)立方程得,再求得直線的點(diǎn)關(guān)于直線對稱點(diǎn)的坐標(biāo)為,進(jìn)而根據(jù)題意得所求直線過點(diǎn),,進(jìn)而得直線方程.【詳解】解:聯(lián)立方程得,即直線與直線的交點(diǎn)為設(shè)直線的點(diǎn)關(guān)于直線對稱點(diǎn)的坐標(biāo)為,所以,解得所以直線關(guān)于直線對稱的直線過點(diǎn),所以所求直線方程的斜率為,所以所求直線的方程為,即故選:C7、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進(jìn)而作,得出,由此求出結(jié)果【詳解】因?yàn)?,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B8、B【解析】執(zhí)行程序框圖,第一次循環(huán),,滿足;第二次循環(huán),,滿足;第三次循環(huán),,不滿足,輸出,故選B.【方法點(diǎn)睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.9、A【解析】由空間向量共面原理得存在實(shí)數(shù),,使得,由此能求出實(shí)數(shù)【詳解】解:,,,、、三個向量共面,存在實(shí)數(shù),,使得,即有:,解得,,實(shí)數(shù)故選:【點(diǎn)睛】本題考查空間向量共面原理的應(yīng)用,屬于基礎(chǔ)題10、D【解析】由題意得當(dāng)時,,根據(jù)題意作出函數(shù)的部分圖象,再結(jié)合圖象即可求出答案【詳解】解:當(dāng)時,,又,∴當(dāng)時,,∴在上單調(diào)遞增,在上單調(diào)遞減,且;又,則函數(shù)圖象每往右平移兩個單位,縱坐標(biāo)變?yōu)樵瓉淼谋?,作出其大致圖象得,當(dāng)時,由得,或,由圖可知,若對任意,都有,則,故選:D【點(diǎn)睛】本題主要考查函數(shù)的圖象變換,考查數(shù)形結(jié)合思想,屬于中檔題11、B【解析】畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】設(shè)調(diào)用卡車的數(shù)量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當(dāng)目標(biāo)函數(shù)經(jīng)過時,縱截距最大,最大.故選:B12、D【解析】設(shè),由,得到四邊形是矩形,在中,利用勾股定理求得,再在中,利用勾股定理求解.【詳解】如圖所示:設(shè),則,,,因?yàn)?,所以,則四邊形是矩形,在中,,即,解得,在中,,即,解得,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、;【解析】求出圓的圓心坐標(biāo),代入直線方程求解即可【詳解】解:的圓心圓被直線平分,可知直線經(jīng)過圓的圓心,可得解得;故答案為:1【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題14、16【解析】根據(jù)橢圓定義可得:,再用基本不等式求解.【詳解】由橢圓的定義可得:,由基本不等式得:,當(dāng)且僅當(dāng)時,等號成立,故的最大值為16故答案為:1615、1【解析】根據(jù)向量共面,可設(shè),先求解出的值,則的值可求.【詳解】因?yàn)椋?,共面且,不共線,所以可設(shè),所以,所以,所以,所以,故答案為:1.16、【解析】對,根據(jù)數(shù)列的單調(diào)性和可判斷;對和,利用等差數(shù)列的通項(xiàng)公式可直接推導(dǎo);對,利用等差數(shù)列的前項(xiàng)和可直接推導(dǎo).【詳解】不妨設(shè)等差數(shù)列的首項(xiàng)為對,,可得:,解得:,即又,則是遞減的,則中的前5項(xiàng)均為正數(shù),所以和都是中的最大項(xiàng),故正確;對,,故有:,故正確;對,,又,則,說明不存在使和同號,故錯誤;對,有:故并不是恒成立的,故錯誤故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)答案見解析【解析】(1)求出導(dǎo)函數(shù)后計(jì)算得斜率,由點(diǎn)斜式得直線方程并整理;(2)求出導(dǎo)函數(shù),然后分類討論它在上的正負(fù)得單調(diào)性【小問1詳解】當(dāng)時,,則,故切線的斜率.又.所以函數(shù)在處的切線方程為:.【小問2詳解】由,得①當(dāng)時,在上單調(diào)遞減;②當(dāng)時,在上單調(diào)遞減;③當(dāng)時,令,得當(dāng)時,在上單調(diào)遞減;當(dāng)時,在單調(diào)遞增;④當(dāng)時,在上單調(diào)遞增;綜上:當(dāng)時,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞增.18、(1)點(diǎn)P為MC中點(diǎn),理由見解析(2)【解析】(1)根據(jù)平面PAB,得到線線垂直,再得到點(diǎn)P的位置;(2)根據(jù)平面PAB,將問題轉(zhuǎn)化為計(jì)算即可.【小問1詳解】∵平面PAB,平面ABP,∴又∵在中,,∴P為MC中點(diǎn).∴若平面PAB,則點(diǎn)P為MC中點(diǎn)【小問2詳解】當(dāng)P為中點(diǎn)時,在中,,,∴,同理可得∴在中,,∵由(1)知平面PAB,∴∴三棱錐的體積為19、(1)證明見解析(2)【解析】(1)通過證明和可得答案;(2)連接,則為直線與平面所成角的平面角,在直角三角形中計(jì)算即可.【小問1詳解】棱柱為直棱柱,面,又面,又直棱柱的底面是矩形,,又,平面,平面,平面;【小問2詳解】連接,面,則為直線與平面所成角的平面角在直角三角形中,則,,所以直線與平面所成角的大小為.20、(1);(2)見解析.【解析】(1)涉及中點(diǎn)弦,用點(diǎn)差法處理即可求得,進(jìn)而求得拋物線方程;(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設(shè),直線,則直線分別和拋物線方程聯(lián)立,解得利用,結(jié)合直線方程,即可證得直線的斜率為定值.【詳解】(1)設(shè),則,兩式相減,得:由弦中點(diǎn)縱坐標(biāo)為2,得,故.所以拋物線的標(biāo)準(zhǔn)方程.(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設(shè)直線由得由點(diǎn)在拋物線上,可知上述方程的一個根為.即,同理.直線的斜率為定值.【點(diǎn)睛】本題考查應(yīng)用點(diǎn)差法處理中點(diǎn)弦問題,直線與拋物線中,斜率為定值問題,考查分析問題的能力,考查學(xué)生的計(jì)算能力,難度較難.21、(1)證明見解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標(biāo)原點(diǎn),分別為軸的空間直角坐標(biāo)系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點(diǎn),則是等邊三角形,,,在中,,滿足,即是直角三角形,則,又,平面,所以平面.【小問2詳解】建立以為坐標(biāo)原點(diǎn),分別為軸的空間直角坐標(biāo)系如圖所示,則,,,,則平面的法向量為,由已知,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度跨國餐飲連鎖品牌許可與加盟合同3篇
- 2025年新型物業(yè)管理保安保潔勞務(wù)合同范本3篇
- 2025年教育用地校田地承包與農(nóng)業(yè)綜合開發(fā)實(shí)施合同3篇
- 2025年度食堂勞務(wù)派遣人員離職交接合同3篇
- 2025年中國水泥留樣桶市場調(diào)查研究報告
- 2025年新型屋頂綠化項(xiàng)目室外施工合同樣本6篇
- 2025-2030年(全新版)中國聲學(xué)材料行業(yè)發(fā)展趨勢展望與投資策略分析報告
- 2025年度車輛融資租賃合同2篇
- 2025年度虛擬現(xiàn)實(shí)技術(shù)在教育培訓(xùn)投資擔(dān)保合同3篇
- 2025年建筑水電工程監(jiān)理合同2篇
- 高處作業(yè)安全培訓(xùn)課件-
- 職中英語期末考試質(zhì)量分析
- 中國的世界遺產(chǎn)智慧樹知到答案章節(jié)測試2023年遼寧科技大學(xué)
- 急性腹瀉與慢性腹瀉修改版
- 先天性肌性斜頸的康復(fù)
- 《國際市場營銷》案例
- GB/T 37518-2019代理報關(guān)服務(wù)規(guī)范
- GB/T 156-2017標(biāo)準(zhǔn)電壓
- PPT溝通的藝術(shù)課件
- 內(nèi)科學(xué):巨幼細(xì)胞性貧血課件
- 暑假家校聯(lián)系情況記錄表
評論
0/150
提交評論