版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省青島實驗高中數(shù)學高二上期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.22.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項和()A.165 B.138C.60 D.303.圓與圓的位置關系為()A.內(nèi)切 B.外切C.相交 D.相離4.已知數(shù)列的前項和,且,則()A. B.C. D.5.在中,角A,B,C所對的邊分別為a,b,c,,則的形狀為()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形6.已知雙曲線的左、右焦點分別為,半焦距為c,過點作一條漸近線的垂線,垂足為P,若的面積為,則該雙曲線的離心率為()A.3 B.2C. D.7.若,都為正實數(shù),,則的最大值是()A. B.C. D.8.在長方體中,()A. B.C. D.9.已知等比數(shù)列的前n項和為,公比為q,若,則下列結論正確的是()A. B.C. D.10.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.11.北京天壇的圜丘壇為古代祭天的場所,分上、中、下三層,上層中心有一塊圓形石板(稱為天心石),環(huán)繞天心石砌9塊扇面形石板構成第一環(huán),向外每環(huán)依次增加9塊,下一層的第一環(huán)比上一層的最后一環(huán)多9塊,向外每環(huán)依次也增加9塊,已知每層環(huán)數(shù)相同,且下層比中層多729塊,則三層共有扇面形石板(不含天心石)()A.3699塊 B.3474塊C.3402塊 D.3339塊12.若、、為空間三個單位向量,,且與、所成的角均為,則()A.5 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則實數(shù)m的值是___________.14.已知數(shù)列滿足,則_____________15.已知等比數(shù)列滿足:,,,則公比______.16.如果橢圓上一點P到焦點的距離等于6,則點P到另一個焦點的距離為____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線(1)求證:直線與圓恒有兩個交點;(2)設直線與圓的兩個交點為、,求的取值范圍18.(12分)如圖,在四棱錐中,面ABCD,,且,,,,,N為PD的中點.(1)求證:平面PBC;(2)在線段PD上是否存在一點M,使得直線CM與平面PBC所成角的正弦值是.若存在,求出的值,若不存在,說明理由.19.(12分)已知數(shù)列的前項和為,若.(1)求的通項公式;(2)設,求數(shù)列的前項和.20.(12分)在等差數(shù)列中,(1)求數(shù)列的通項公式;(2)設,求.21.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點,為橢圓上一點,的周長為.(1)求橢圓的方程;(2)為圓上任意一點,過作橢圓的兩條切線,切點分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,22.(10分)已知橢圓的焦距為4,點在G上.(1)求橢圓G方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標原點,若,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.2、A【解析】由等差數(shù)列的定義與等比數(shù)列的性質(zhì)求得首項,然后由等差數(shù)列的前項和公式計算【詳解】因為,,成等比數(shù)列,所以,所以,解得,所以故選:A3、B【解析】求出兩圓的圓心距與半徑之和、半徑之差比較大小即可得出正確答案.【詳解】由可得圓心為,半徑,由可得圓心為,半徑,所以圓心距為,所以兩圓相外切,故選:B.4、C【解析】由an=Sn-Sn-1,【詳解】解:因為,所以,,兩式相減可得,即,因為,,所以,即,時,也滿足上式,所以,所以,故選:C.5、C【解析】根據(jù)三角恒等變換結合正弦定理化簡求得,即可判定三角形形狀.【詳解】解:由題,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形為直角三角形.故選:C.6、D【解析】根據(jù)給定條件求出,再計算面積列式計算作答.【詳解】依題意,點,由雙曲線對稱性不妨取漸近線,即,則,令坐標原點為O,中,,又點O是線段的中點,因此,,則有,即,,,所以雙曲線的離心率為故選:D7、B【解析】由基本不等式,結合題中條件,直接求解,即可得出結果.【詳解】因為,都為正實數(shù),,所以,當且僅當,即時,取最大值.故選:D8、D【解析】根據(jù)向量的運算法則得到,帶入化簡得到答案.【詳解】在長方體中,易知,所以.故選:D.9、D【解析】根據(jù),可求得,然后逐一分析判斷各個選項即可得解.【詳解】解:因為,所以,因為,所以,所以,故A錯誤;又,所以,所以,所以,故BC錯誤;所以,故D正確.故選:D.10、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.11、C【解析】第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項,9為公差的等差數(shù)列,設為的前n項和,由題意可得,解方程即可得到n,進一步得到.【詳解】設第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項,9為公差的等差數(shù)列,,設為的前n項和,則第一層、第二層、第三層的塊數(shù)分別為,因為下層比中層多729塊,所以,即即,解得,所以.故選:C【點晴】本題主要考查等差數(shù)列前n項和有關的計算問題,考查學生數(shù)學運算能力,是一道容易題.12、C【解析】先求的平方后再求解即可.【詳解】,故,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】結合已知條件和空間向量的數(shù)量積的坐標公式即可求解.【詳解】因為,所以,解得.故答案為:.14、【解析】找到數(shù)列的規(guī)律,由此求得.【詳解】依題意,,,所以數(shù)列是以為周期的周期數(shù)列,.故答案為:15、【解析】根據(jù)等比數(shù)列的通項公式可得,結合即可求出公比.【詳解】設等比數(shù)列的公式為q,則,即,解得,又,所以,所以.故答案為:.16、14【解析】根據(jù)橢圓的定義及橢圓上一點P到焦點的距離等于6,可得的長.【詳解】解:根據(jù)橢圓的定義,又橢圓上一點P到焦點的距離等于6,,故,故答案:.【點睛】本題主要考查橢圓的定義及簡單性質(zhì),相對簡單.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)直線的方程可得直線經(jīng)過定點,而點到圓心的距離小于半徑,故點在圓的內(nèi)部,由此即可證明結果(2)由圓的性質(zhì)可知,當過圓心時,取最大值,當和過的直徑垂直時,取最小值,由此即可求出結果.【小問1詳解】證明:由于直線,即令,解得,所以恒過點,所以,所以點在圓內(nèi),所以直線與圓恒有兩個交點;【小問2詳解】解:當過圓心時,取最大值,即圓的直徑,由圓的半徑,所以的最大值為;當和過的直徑垂直時,取最小值,此時圓心到的距離,所以,故的最小值為綜上,的取值范圍.18、(1)證明見解析(2)存在,且【解析】(1)建立空間直角坐標系,利用向量法證得平面.(2)設,利用直線與平面所成角的正弦值列方程,化簡求得.【小問1詳解】設是的中點,連接,由于,所以四邊形是矩形,所以,由于平面,所以,以為空間坐標原點建立如圖所示空間直角坐標系,,,,設平面的法向量為,則,故可設.,且平面,所以平面.【小問2詳解】,設,則,,,設直線與平面所成角為,則,,兩邊平方并化簡得,解得或(舍去).所以存在,使直線與平面所成角的正弦值是,且.19、(1)(2)【解析】(1)根據(jù)所給條件先求出首項,然后仿寫,作差即可得到的通項公式;(2)根據(jù)(1)求出的通項公式,觀察是由一個等差數(shù)列加上一個等比數(shù)列得到,要求其前項和,采用分組求和法結合公式法可求出前項和【小問1詳解】當時,,解得;當時,,∴,化簡得,∴是首項為1,公比為2的等比數(shù)列,∴,因此的通項公式為.【小問2詳解】由(1)得,∴,∴,∴20、(1)(2)1280【解析】(1)直接利用等差數(shù)列通項公式即可求解;(2)先判斷出數(shù)列單調(diào)性,由,則時,,時,;然后去掉絕對值,利用等差數(shù)列的前項和公式求解即可.【小問1詳解】設數(shù)列的公差為,由,可知,∴;【小問2詳解】由(1)知,數(shù)列為單調(diào)遞減數(shù)列,由,則時,,時,;.21、(1)(2)是;【解析】(1)由離心率和焦點三角形周長可求出,結合關系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當平行于軸時,設過的直線為,聯(lián)立橢圓方程,令化簡得關于的二次方程,由韋達定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標準方程為:;【小問2詳解】如圖所示,當平行于軸時,恰好平行于軸,,,;當不平行于軸時,設,設過點的直線為,聯(lián)立得,令得,化簡得,設,則,又,故,即.綜上所述,.22、(1);(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞保防護知識培訓
- 中醫(yī)股骨頸骨折護理查房
- 2024-2025學年江蘇省無錫市江陰文林中學九年級(上)國慶假期作業(yè)一數(shù)學試卷(含答案)
- T-XMSSAL 0109-2024 供廈食品 蠔油
- Windows Server網(wǎng)絡管理項目教程(Windows Server 2022)(微課版)課件 項目1 部署虛擬環(huán)境和安裝Windows Server 2022操作系統(tǒng)
- 組裝電腦基礎理論知識單選題100道及答案解析
- 臨床試驗設計中的統(tǒng)計學基礎
- 高三化學蘇教版一輪31化學反應中熱效應
- 2024-2025學年八年級上學期歷史期中模擬試卷(統(tǒng)編版+含答案解析)
- 小學高年級安全教育教案
- 免疫學學習通課后習題(無標注)
- 安全駕駛機動車的濕滑路面
- 探究“對勾”函數(shù)的圖象與性質(zhì)+教學設計 高一上學期數(shù)學人教A版(2019)必修第一冊
- 如何幫助大學生處理性別認同和性取向問題
- 高中生物必修三第一二章測試題(含答案)
- 【地理】湖北省鄂東南聯(lián)盟2023-2024學年高一上學期期中聯(lián)考(解析版)
- 統(tǒng)編版五年級上冊語文第六單元集體備課 課件
- 淺談一年級小學生行為習慣的養(yǎng)成教育獲獎科研報告
- 房地產(chǎn)開發(fā)公司安全生產(chǎn)管理制度范文
- 藝術培訓中心機構創(chuàng)辦經(jīng)營項目招商引資方案
- 煤制乙二醇項目評估報告
評論
0/150
提交評論