版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆北京市師大附中高二數(shù)學第一學期期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的兩個焦點,,是雙曲線上一點,且,,則雙曲線的標準方程是()A. B.C. D.2.已知,,直線:,:,且,則的最小值為()A.2 B.4C.8 D.93.已知函數(shù)f(x)的圖象如圖所示,則導函數(shù)f(x)的圖象可能是()A. B.C. D.4.已知空間中三點,,,則下列結(jié)論中正確的有()A.平面ABC的一個法向量是 B.的一個單位向量的坐標是C. D.與是共線向量5.已知是雙曲線C的兩個焦點,P為C上一點,且,則C的離心率為()A. B.C. D.6.若構(gòu)成空間的一個基底,則下列向量能構(gòu)成空間的一個基底的是()A.,, B.,,C.,, D.,,7.若,,且,則()A. B.C. D.8.若拋物線與直線:相交于兩點,則弦的長為()A.6 B.8C. D.9.已知實數(shù)x,y滿足,則的最大值為()A. B.C.2 D.110.下列函數(shù)求導運算正確的個數(shù)為()①;②;③;④.A.1 B.2C.3 D.411.設函數(shù)在上可導,則等于()A. B.C. D.以上都不對12.已知,為雙曲線:的焦點,為,(其中為雙曲線半焦距),與雙曲線的交點,且有,則該雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,,,P,F(xiàn)分別是線段,的中點,則點P到直線EF的距離是___________.14.已知函數(shù)的單調(diào)遞減區(qū)間是,則的值為______.15.已知橢圓()中,成等比數(shù)列,則橢圓的離心率為_______.16.,若2是與的等比中項,則的最小值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是首項為1,公差不為0的等差數(shù)列,且成等比數(shù)列.數(shù)列的前項的和為,且滿足.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.18.(12分)已知橢圓:的左、右焦點分別為,,過點的直線l交橢圓于A,兩點,的中點坐標為.(1)求直線l的方程;(2)求的面積.19.(12分)如圖,四棱錐的底面是正方形,PD⊥底面ABCD,M為BC的中點,(1)證明:;(2)設平面平面,求l與平面MND所成角的正弦值20.(12分)已知函數(shù),且a0(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù),若函數(shù)有兩個零點,①求實數(shù)a的取值范圍;②證明:21.(12分)已知圓C的方程為.(1)直線l1過點P(3,1),傾斜角為45°,且與圓C交于A,B兩點,求AB的長;(2)求過點P(3,1)且與圓C相切的直線l2的方程.22.(10分)已知橢圓的離心率,左、右焦點分別為、,點在橢圓上,過的直線交橢圓于、兩點.(1)求橢圓的標準方程;(2)求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)條件設,,由條件求得,即可求得雙曲線方程.【詳解】設,則由已知得,,又,,又,,雙曲線的標準方程為.故選:D2、C【解析】由,可求得,再由,利用基本不等式求出最小值即可.【詳解】因為,所以,即,因為,,所以,當且僅當,即時等號成立,所以的最小值為8.故選:C.【點睛】本題考查垂直直線的性質(zhì),考查利用基本不等式求最值,考查學生的計算求解能力,屬于中檔題.3、D【解析】根據(jù)導函數(shù)正負與原函數(shù)單調(diào)性關系可作答【詳解】原函數(shù)在上先減后增,再減再增,對應到導函數(shù)先負再正,再負再正,且原函數(shù)在處與軸相切,故可知,導函數(shù)圖象為D故選:D4、A【解析】根據(jù)已知條件,結(jié)合空間中平面法向量的定義,向量模長的求解,以及共線定理,對每個選項進行逐一分析,即可判斷和選擇.【詳解】因為,,,故可得,因為,故,不平行,則D錯誤;對A:不妨記向量為,則,又,不平行,故向量是平面的法向量,則A正確;對B:因為向量的模長為,其不是單位向量,故B錯誤;對C:因為,故可得,故C錯誤;故選:A.5、A【解析】根據(jù)雙曲線的定義及條件,表示出,結(jié)合余弦定理可得答案.【詳解】因為,由雙曲線的定義可得,所以,;因為,由余弦定理可得,整理可得,所以,即.故選:A【點睛】關鍵點睛:雙曲線的定義是入手點,利用余弦定理建立間的等量關系是求解的關鍵.6、B【解析】由空間向量內(nèi)容知,構(gòu)成基底的三個向量不共面,對選項逐一分析【詳解】對于A:,因此A不滿足題意;對于B:根據(jù)題意知道,,不共面,而和顯然位于向量和向量所成平面內(nèi),與向量不共面,因此B正確;對于C:,故C不滿足題意;對于D:顯然有,選項D不滿足題意.故選:B7、A【解析】由于對數(shù)函數(shù)的存在,故需要對進行放縮,結(jié)合(需證明),可放縮為,利用等號成立可求出,進而得解.【詳解】令,,故在上單調(diào)遞減,在上單調(diào)遞增,,故,即,當且僅當,等號成立.所以,當且僅當時,等號成立,又,所以,即,所以,又,所以,,故故選:A8、B【解析】由題得拋物線的焦點坐標為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點坐標為剛好在直線上,設,聯(lián)立直線和拋物線方程得,所以.所以.故選:B9、A【解析】作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求出的最大值.【詳解】作出可行域如圖所示,由可知,此直線可用由直線平移得到,求的最大值,即直線的截距最大,當直線過直線的交點時取最大值,即故選:10、A【解析】根據(jù)導數(shù)的運算法則和導數(shù)的基本公式計算后即可判斷【詳解】解:①,故錯誤;②,故正確;③,故錯誤;④,故錯誤.所以求導運算正確的個數(shù)為1.故選:A.11、C【解析】根據(jù)目標式,結(jié)合導數(shù)的定義即可得結(jié)果.【詳解】.故選:C12、B【解析】根據(jù)求得的關系,結(jié)合雙曲線的定義以及勾股定理,即可求得的等量關系,再求離心率即可.【詳解】根據(jù)題意,連接,作圖如下:顯然為直角三角形,又,又點在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以A為坐標原點建立空間直角坐標系,利用向量法即可求解點P到直線EF的距離.【詳解】解:如圖,以A為坐標原點,,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,因為,所以,,,所以,,所以點P到直線EF的距離.故答案為:.14、【解析】先求出,由題設易知是的解集,利用根與系數(shù)關系求m、n,進而求的值.【詳解】由題設,,由單調(diào)遞減區(qū)間是,∴的解集為,則是的解集,∴,可得,故.故答案為:15、【解析】根據(jù)成等比數(shù)列,可得,再根據(jù)的關系可得,然后結(jié)合的自身范圍解方程即可求出【詳解】∵成等比數(shù)列,∴,∴,∴,∴,又,∴故答案為:【點睛】本題主要考查橢圓的離心率的計算以及等比數(shù)列定義的應用,意在考查學生的數(shù)學運算能力,屬于基礎題16、3【解析】根據(jù)等比中項列方程,結(jié)合基本不等式求得的最小值.【詳解】由題可得,則,當且僅當時等號成立.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)設數(shù)列公差為,由成等比數(shù)列求得,可得.利用求得;(2)利用錯位相減求和即可.【小問1詳解】設數(shù)列公差為,由成等比數(shù)列有:,解得:,所以,數(shù)列,當即,,解得:,當時,有,所以,得:.又,所以數(shù)列為以為首項,公比為的等比數(shù)列,所以數(shù)列的通項公式為:.【小問2詳解】,,,得,,化簡得:.18、(1)(2)【解析】(1)設,根據(jù)AB的中點坐標可得,再利用點差法求得直線的斜率,即可求出直線方程;(2)易得直線過左焦點,聯(lián)立直線和橢圓方程,消,利用韋達定理求得,再根據(jù)即可得出答案.【小問1詳解】解:設,因為的中點坐標為,所以,則,兩式相減得,即,即,所以直線l的斜率為1,所以直線l的方程為,即;【小問2詳解】在直線中,當時,,由橢圓:,得,則直線過點,聯(lián)立,消整理得,則,.19、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用向量法證得.(2)利用向量法求得與平面所成角的正弦值.【小問1詳解】∵PD⊥平面ABCD,,以點D為坐標原點,DA,DC,DP所在直線分別為x,y,z軸建立如圖所示的空間直角坐標系Dxyz,則D(0,0,0),N(,0,),P(0,0,2),M(1,2,0)所以,,所以,所以.【小問2詳解】由正方形ABCD得,CD//AB,∵平面PAB,平面PAB,∴CD//平面PAB;又∵平面PCD,平面平面∴CD//l;于是CD與平面MND所成的角即為l與平面MND所成的角由(1)知,設平面MND的一個法向量,則,取,則,于是是平面MND的一個法向量,因為,設l與平面MND所成角為,則20、(1)函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減(2)①;②證明見解析【解析】(1)求導,求解可得導函數(shù)恒小于等于0,即得證;(2)①分析函數(shù)的單調(diào)性,由有兩個實數(shù)根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問題得證.【小問1詳解】當a=1時,函數(shù)因為所以函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減;【小問2詳解】(i)由已知可得方程有兩個實數(shù)根記,則.當時,,函數(shù)k(x)是增函數(shù);當時,,函數(shù)k(x)是減函數(shù),所以,故(ii)易知,當x1時,,故.由(1)可知,當0x1時,,所以2lnxx?由,得,所以因為,所以21、(1)(2)x=3或【解析】(1)首先利用點斜式求出直線的方程,再利用點到直線的距離公式求出圓心到直線的距離,最后利用垂直定理、勾股定理計算可得;(2)依題意可得點在圓外,分直線的斜率存在與不存在兩種情況討論,當直線的斜率不存在直線得到直線方程,但直線的斜率存在時設直線方程為,利用點到直線的距離公式得到方程,解得,即可得解;【小問1詳解】解:根據(jù)題意,直線的方程為,即,則圓心到直線的距離為故;【小問2詳解】解:根據(jù)題意,點在圓外,分兩種情況討論:當直線的斜率不存在時,過點的直線方程是,此時與圓C:相切,滿足題意;當直線的斜率存在時,設直線方程為,即,直線與圓相切時,圓心到直線的距離為解得此時,直線的方程為,所以滿
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家政服務合同服務合同違約注意事項
- 盡快辦理房屋買賣合同事項
- 房屋合同補充協(xié)議糾紛解決
- 自來水管道鋪設合同范本
- 出國定居申請書
- 高效醫(yī)院體檢服務合同
- 電池制造購銷合同
- 服務品質(zhì)保證書樣例
- 遺贈撫養(yǎng)協(xié)議樣本
- 住宅質(zhì)量保證承諾書
- 從零開始學韓語智慧樹知到期末考試答案章節(jié)答案2024年青島酒店管理職業(yè)技術學院
- 月子餐課件-參考模板
- 《稻草人》整本書導讀課(教學設計)2023-2024學年統(tǒng)編版語文三年級上冊
- 中圖版高中地理選擇性必修2模塊綜合測試
- 部編版五年級語文上冊期末試卷(含答案)-
- 走進民航智慧樹知到期末考試答案2024年
- 醫(yī)用氧氣安全培訓課件
- 物資、百貨、五金采購 投標方案(技術方案)
- 2023-2024學年河南省開封市祥符區(qū)六年級下學期小升初招生語文試卷含答案
- 2023-2024年人教版七年級上冊數(shù)學期末試題(含簡單答案)
- 人教版六年級上冊數(shù)學《圓》大單元作業(yè)設計
評論
0/150
提交評論