版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023屆云南省昆明市官渡區(qū)官渡區(qū)第一中學(xué)普通高中高三下學(xué)期學(xué)業(yè)質(zhì)量監(jiān)測(期末)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號(hào)連接)為()A. B.C. D.2.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時(shí)間,采用分層抽樣的方法從高生和初中生中抽取一個(gè)容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.3.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2824.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實(shí)現(xiàn)了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個(gè)D.去年同期浙江省的GDP總量超過了4500億元5.一個(gè)四面體所有棱長都是4,四個(gè)頂點(diǎn)在同一個(gè)球上,則球的表面積為()A. B. C. D.6.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.7.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.8.在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:.假設(shè)螞蟻窩在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn).那么完成這個(gè)工作所需要走的最短路徑長度是()A. B. C. D.9.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.610.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.311.已知等差數(shù)列的前n項(xiàng)和為,且,則()A.4 B.8 C.16 D.212.雙曲線的左右焦點(diǎn)為,一條漸近線方程為,過點(diǎn)且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實(shí)數(shù)x,y滿足,則點(diǎn)表示的區(qū)域面積為______.14.已知,(,),則=_______.15.已知函數(shù)函數(shù),則不等式的解集為____.16.函數(shù)的定義域是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,a1=1,其前n項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.18.(12分)某商場舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽?。媒Y(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個(gè)數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?19.(12分)在中,角所對的邊分別是,且.(1)求角的大小;(2)若,求邊長.20.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時(shí),證明:.21.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計(jì)男女1055合計(jì)(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63522.(10分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】因?yàn)?,所以,即周期為4,因?yàn)闉槠婧瘮?shù),所以可作一個(gè)周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因?yàn)?,因此,選A.點(diǎn)睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點(diǎn)對稱);(2)函數(shù)關(guān)于點(diǎn)對稱,函數(shù)關(guān)于直線對稱,(3)函數(shù)周期為T,則2、B【解析】
利用某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比計(jì)算即可.【詳解】由題意,,解得.故選:B.【點(diǎn)睛】本題考查簡單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.3、B【解析】
將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題4、D【解析】
根據(jù)折線圖、柱形圖的性質(zhì),對選項(xiàng)逐一判斷即可.【詳解】由折線圖可知A、B項(xiàng)均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個(gè).故C項(xiàng)正確;.故D項(xiàng)不正確.故選:D.【點(diǎn)睛】本題考查折線圖、柱形圖的識(shí)別,考查學(xué)生的閱讀能力、數(shù)據(jù)處理能力,屬于中檔題.5、A【解析】
將正四面體補(bǔ)成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補(bǔ)形成一個(gè)正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【點(diǎn)睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.6、D【解析】
根據(jù)框圖,模擬程序運(yùn)行,即可求出答案.【詳解】運(yùn)行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【點(diǎn)睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.7、D【解析】
把5本書編號(hào),然后用列舉法列出所有基本事件.計(jì)數(shù)后可求得概率.【詳解】3本不同的語文書編號(hào)為,2本不同的數(shù)學(xué)書編號(hào)為,從中任意取出2本,所有的可能為:共10個(gè),恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【點(diǎn)睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計(jì)數(shù)計(jì)算概率.8、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點(diǎn)睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.9、B【解析】
利用等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.10、A【解析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長度相關(guān)的最值問題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來求解.11、A【解析】
利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計(jì)算,難度容易.12、A【解析】
設(shè),直線的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因?yàn)椋詾榫€段的中點(diǎn),所以,,整理得,故該雙曲線的離心率.故選:.【點(diǎn)睛】本題考查了雙曲線的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先畫出滿足條件的平面區(qū)域,求出交點(diǎn)坐標(biāo),利用定積分即可求解.【詳解】畫出實(shí)數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點(diǎn)睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.14、【解析】
先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點(diǎn)睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、【解析】,,所以,所以的解集為。點(diǎn)睛:本題考查絕對值不等式。本題先對絕對值函數(shù)進(jìn)行分段處理,再得到的解析式,求得的分段函數(shù)解析式,再解不等式即可。絕對值函數(shù)一般都去絕對值轉(zhuǎn)化為分段函數(shù)處理。16、【解析】解:因?yàn)?,故定義域?yàn)槿?、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)項(xiàng)和轉(zhuǎn)換可得,繼而得到,可得解;(2)代入可得,由數(shù)列為遞增數(shù)列可得,,令,可證明為遞增數(shù)列,即,即得解【詳解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵數(shù)列為遞增數(shù)列,∴,即.令,即.∴為遞增數(shù)列,∴,即的取值范圍為.【點(diǎn)睛】本題考查了數(shù)列綜合問題,考查了項(xiàng)和轉(zhuǎn)換,數(shù)列的單調(diào)性,最值等知識(shí)點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.18、(1)(2)選擇方案二更為劃算【解析】
(1)計(jì)算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計(jì)算概率得到數(shù)學(xué)期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因?yàn)椋赃x擇方案二更為劃算.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.19、(1);(2).【解析】
(1)把代入已知條件,得到關(guān)于的方程,得到的值,從而得到的值.(2)由(1)中得到的的值和已知條件,求出,再根據(jù)正弦定理求出邊長.【詳解】(1)因?yàn)?,,所以,,所以,?因?yàn)?,所以,因?yàn)椋?(2).在中,由正弦定理得,所以,解得.【點(diǎn)睛】本題考查三角函數(shù)公式的運(yùn)用,正弦定理解三角形,屬于簡單題.20、(1)(2)證明見解析【解析】
(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以是的最大值點(diǎn),所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以是的最小值點(diǎn),,則,故.【點(diǎn)睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.21、(1)無關(guān);(2),.【解析】
(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計(jì)男301545女451055合計(jì)7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得.因?yàn)?.030<3.841,所以我們沒有充分理由認(rèn)為“體育迷”與性別有關(guān).(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度環(huán)保型建筑塔吊租賃與回收利用合同3篇
- 二零二五年度建筑工程水電材料質(zhì)量追溯體系合同3篇
- 哈爾濱電力職業(yè)技術(shù)學(xué)院《西方文學(xué)理論史》2023-2024學(xué)年第一學(xué)期期末試卷
- 哈爾濱北方航空職業(yè)技術(shù)學(xué)院《漢字文化解密》2023-2024學(xué)年第一學(xué)期期末試卷
- 桂林學(xué)院《農(nóng)業(yè)微生物學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 桂林生命與健康職業(yè)技術(shù)學(xué)院《動(dòng)物醫(yī)學(xué)創(chuàng)業(yè)論壇與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 桂林理工大學(xué)《民法案例研習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州職業(yè)技術(shù)學(xué)院《投資基金學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州食品工程職業(yè)學(xué)院《醫(yī)學(xué)遺傳學(xué)研究進(jìn)展》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025-2030年中國出境游行業(yè)開拓第二增長曲線戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2024年5G網(wǎng)絡(luò)覆蓋工程分包合同
- 2025屆北京市海淀區(qū)交大附中高一物理第一學(xué)期期末復(fù)習(xí)檢測試題含解析
- 護(hù)理員技能培訓(xùn)課件
- 煤礦防治水細(xì)則解讀
- 四川新農(nóng)村建設(shè)農(nóng)房設(shè)計(jì)方案圖集川東北部分
- 2023智能座艙白皮書-聚焦電動(dòng)化下半場-畢馬威
- 福建省福州市九師教學(xué)聯(lián)盟2023-2024學(xué)年高一上學(xué)期期末學(xué)業(yè)聯(lián)考化學(xué)試題(解析版)
- 植物病蟲害防治技能大賽理論題及答案
- 2024-2025學(xué)年六年級科學(xué)上冊第二單元《地球的運(yùn)動(dòng)》測試卷(教科版)
- 福建省廈門市2023-2024學(xué)年高二上學(xué)期期末考試語文試題(原卷版)
- 生態(tài)河道治理工程施工組織設(shè)計(jì)
評論
0/150
提交評論