2023年高考數(shù)學(xué)文一輪復(fù)習(xí)教案第2章2.7對(duì)數(shù)與對(duì)數(shù)函數(shù)_第1頁(yè)
2023年高考數(shù)學(xué)文一輪復(fù)習(xí)教案第2章2.7對(duì)數(shù)與對(duì)數(shù)函數(shù)_第2頁(yè)
2023年高考數(shù)學(xué)文一輪復(fù)習(xí)教案第2章2.7對(duì)數(shù)與對(duì)數(shù)函數(shù)_第3頁(yè)
2023年高考數(shù)學(xué)文一輪復(fù)習(xí)教案第2章2.7對(duì)數(shù)與對(duì)數(shù)函數(shù)_第4頁(yè)
2023年高考數(shù)學(xué)文一輪復(fù)習(xí)教案第2章2.7對(duì)數(shù)與對(duì)數(shù)函數(shù)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2.7對(duì)數(shù)與對(duì)數(shù)函數(shù)INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\左括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\左括.TIF"INET【考試要求INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\右括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\右括.TIF"INET】1.理解對(duì)數(shù)的概念及運(yùn)算性質(zhì),能用換底公式將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù).2.通過(guò)實(shí)例,了解對(duì)數(shù)函數(shù)的概念,會(huì)畫對(duì)數(shù)函數(shù)的圖象,理解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn).3.了解指數(shù)函數(shù)y=ax與對(duì)數(shù)函數(shù)y=logax(a>0,且a≠1)互為反函數(shù).INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\左括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\左括.TIF"INET【知識(shí)梳理INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\右括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\右括.TIF"INET】1.對(duì)數(shù)的概念一般地,如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對(duì)數(shù),記作x=logaN,其中a叫做對(duì)數(shù)的底數(shù),N叫做真數(shù).以10為底的對(duì)數(shù)叫做常用對(duì)數(shù),記作lgN.以e為底的對(duì)數(shù)叫做自然對(duì)數(shù),記作lnN.2.對(duì)數(shù)的性質(zhì)與運(yùn)算性質(zhì)(1)對(duì)數(shù)的性質(zhì):loga1=0,logaa=1,=N(a>0,且a≠1,N>0).(2)對(duì)數(shù)的運(yùn)算性質(zhì)如果a>0,且a≠1,M>0,N>0,那么:①loga(MN)=logaM+logaN;②logaeq\f(M,N)=logaM-logaN;③logaMn=nlogaM(n∈R).(3)換底公式:logab=eq\f(logcb,logca)(a>0,且a≠1,b>0,c>0,且c≠1).3.對(duì)數(shù)函數(shù)的圖象與性質(zhì)y=logaxa>10<a<1圖象定義域(0,+∞)值域R性質(zhì)過(guò)定點(diǎn)(1,0),即x=1時(shí),y=0當(dāng)x>1時(shí),y>0;當(dāng)0<x<1時(shí),y<0當(dāng)x>1時(shí),y<0;當(dāng)0<x<1時(shí),y>0在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)4.反函數(shù)指數(shù)函數(shù)y=ax(a>0且a≠1)與對(duì)數(shù)函數(shù)y=logax(a>0且a≠1)互為反函數(shù),它們的圖象關(guān)于直線y=x對(duì)稱.INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\左括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\左括.TIF"INET【常用結(jié)論INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\右括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\右括.TIF"INET】1.logab·logba=1,=eq\f(n,m)logab.2.如圖給出4個(gè)對(duì)數(shù)函數(shù)的圖象則b>a>1>d>c>0,即在第一象限,不同的對(duì)數(shù)函數(shù)圖象從左到右底數(shù)逐漸增大.3.對(duì)數(shù)函數(shù)y=logax(a>0且a≠1)的圖象恒過(guò)點(diǎn)(1,0),(a,1),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),-1)).INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\左括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\左括.TIF"INET【思考辨析INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\右括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\右括.TIF"INET】判斷下列結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”)(1)若MN>0,則loga(MN)=logaM+logaN.(×)(2)對(duì)數(shù)函數(shù)y=logax(a>0,且a≠1)在(0,+∞)上是增函數(shù).(×)(3)函數(shù)y=logaeq\f(1+x,1-x)與函數(shù)y=ln(1+x)-ln(1-x)是同一個(gè)函數(shù).(×)(4)函數(shù)y=log2x與y=的圖象重合.(√)INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\左括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\左括.TIF"INET【教材題改編INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\右括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\右括.TIF"INET】1.函數(shù)y=loga(x-2)+2(a>0且a≠1)的圖象恒過(guò)定點(diǎn).答案(3,2)解析∵loga1=0,令x-2=1,∴x=3,∴y=loga1+2=2,∴原函數(shù)的圖象恒過(guò)定點(diǎn)(3,2).2.計(jì)算:(log29)·(log34)=.答案4解析(log29)·(log34)=eq\f(lg9,lg2)×eq\f(lg4,lg3)=eq\f(2lg3,lg2)×eq\f(2lg2,lg3)=4.3.若函數(shù)y=logax(a>0,a≠1)在[2,4]上的最大值與最小值的差是1,則a=.答案eq\f(1,2)或2解析當(dāng)a>1時(shí),loga4-loga2=loga2=1,∴a=2;當(dāng)0<a<1時(shí),loga2-loga4=-loga2=1,∴a=eq\f(1,2),綜上有a=eq\f(1,2)或2.題型一對(duì)數(shù)式的運(yùn)算例1(1)設(shè)2a=5b=m,且eq\f(1,a)+eq\f(1,b)=2,則m等于()A.eq\r(10)B.10C.20D.100答案A解析2a=5b=m,∴l(xiāng)og2m=a,log5m=b,∴eq\f(1,a)+eq\f(1,b)=eq\f(1,log2m)+eq\f(1,log5m)=logm2+logm5=logm10=2,∴m2=10,∴m=eq\r(10)(舍m=-eq\r(10)).(2)計(jì)算:log535+2eq\r(2)-log5eq\f(1,50)-log514=.答案2解析原式=log535-log5eq\f(1,50)-log514+(eq\r(2))2=log5eq\f(35,\f(1,50)×14)+=log5125-1=log553-1=3-1=2.INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\左括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\左括.TIF"INET【備選INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\右括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\右括.TIF"INET】計(jì)算:eq\f(1-log632+log62·log618,log64)=.答案1解析原式=eq\f(1-2log63+log632+log6\f(6,3)·log66×3,log64)=eq\f(1-2log63+log632+1-log632,log64)=eq\f(21-log63,2log62)=eq\f(log66-log63,log62)=eq\f(log62,log62)=1.思維升華解決對(duì)數(shù)運(yùn)算問(wèn)題的常用方法(1)將真數(shù)化為底數(shù)的指數(shù)冪的形式進(jìn)行化簡(jiǎn).(2)將同底對(duì)數(shù)的和、差、倍合并.(3)利用換底公式將不同底的對(duì)數(shù)式轉(zhuǎn)化成同底的對(duì)數(shù)式,要注意換底公式的正用、逆用及變形應(yīng)用.跟蹤訓(xùn)練1(1)已知a>b>1,若logab+logba=eq\f(5,2),ab=ba,則a+b=.答案6解析設(shè)logba=t,則t>1,因?yàn)閠+eq\f(1,t)=eq\f(5,2),所以t=2,則a=b2.又ab=ba,所以b2b=,即2b=b2,又a>b>1,解得b=2,a=4.所以a+b=6.(2)計(jì)算:lg25+lg50+lg2·lg500+(lg2)2=.答案4解析原式=2lg5+lg(5×10)+lg2·lg(5×102)+(lg2)2=2lg5+lg5+1+lg2·(lg5+2)+(lg2)2=3lg5+1+lg2·lg5+2lg2+(lg2)2=3lg5+2lg2+1+lg2(lg5+lg2)=3lg5+2lg2+1+lg2=3(lg5+lg2)+1=4.題型二對(duì)數(shù)函數(shù)的圖象及應(yīng)用例2(1)已知函數(shù)f(x)=loga(2x+b-1)(a>0,且a≠1)的圖象如圖所示,則a,b滿足的關(guān)系是()A.0<a-1<b<1 B.0<b<a-1<1C.0<b-1<a<1 D.0<a-1<b-1<1答案A解析由函數(shù)圖象可知,f(x)為增函數(shù),故a>1.函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為(0,logab),由函數(shù)圖象可知-1<logab<0,解得eq\f(1,a)<b<1.綜上有0<eq\f(1,a)<b<1.(2)若方程4x=logax在eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(1,2)))上有解,則實(shí)數(shù)a的取值范圍為.答案eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(\r(2),2)))解析若方程4x=logax在eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(1,2)))上有解,則函數(shù)y=4x和函數(shù)y=logax在eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(1,2)))上有交點(diǎn),由圖象知eq\b\lc\{\rc\(\a\vs4\al\co1(0<a<1,,loga\f(1,2)≤2,))解得0<a≤eq\f(\r(2),2).INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\左括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\左括.TIF"INET【備選INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\右括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\右括.TIF"INET】已知x1,x2分別是函數(shù)f(x)=ex+x-2,g(x)=lnx+x-2的零點(diǎn),則+lnx2的值為()A.e2+ln2 B.e+ln2C.2 D.4答案C解析根據(jù)題意,已知x1,x2分別是函數(shù)f(x)=ex+x-2,g(x)=lnx+x-2的零點(diǎn),函數(shù)f(x)=ex+x-2的零點(diǎn)為函數(shù)y=ex的圖象與y=2-x的圖象的交點(diǎn)的橫坐標(biāo),則兩個(gè)函數(shù)圖象的交點(diǎn)為(x1,),函數(shù)g(x)=lnx+x-2的零點(diǎn)為函數(shù)y=lnx的圖象與y=2-x的圖象的交點(diǎn)的橫坐標(biāo),則兩個(gè)函數(shù)圖象的交點(diǎn)為(x2,lnx2),又由函數(shù)y=ex與函數(shù)y=lnx互為反函數(shù),其圖象關(guān)于直線y=x對(duì)稱,而直線y=2-x也關(guān)于直線y=x對(duì)稱,則點(diǎn)(x1,)和(x2,lnx2)也關(guān)于直線y=x對(duì)稱,則有x1=lnx2,則有+lnx2=+x1=2.思維升華對(duì)數(shù)函數(shù)圖象的識(shí)別及應(yīng)用方法(1)在識(shí)別函數(shù)圖象時(shí),要善于利用已知函數(shù)的性質(zhì)、函數(shù)圖象上的特殊點(diǎn)(與坐標(biāo)軸的交點(diǎn)、最高點(diǎn)、最低點(diǎn)等)排除不符合要求的選項(xiàng).(2)一些對(duì)數(shù)型方程、不等式問(wèn)題常轉(zhuǎn)化為相應(yīng)的函數(shù)圖象問(wèn)題,利用數(shù)形結(jié)合法求解.跟蹤訓(xùn)練2(1)已知函數(shù)f(x)=logax+b的圖象如圖所示,那么函數(shù)g(x)=ax+b的圖象可能為()答案D解析結(jié)合已知函數(shù)的圖象可知,f(1)=b<-1,a>1,則g(x)單調(diào)遞增,且g(0)=b+1<0,故D符合題意.(2)(2022·西安調(diào)研)設(shè)x1,x2,x3均為實(shí)數(shù),且=lnx1,=ln(x2+1),=lgx3,則()A.x1<x2<x3 B.x1<x3<x2C.x2<x3<x1 D.x2<x1<x3答案D解析畫出函數(shù)y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e)))x,y=lnx,y=ln(x+1),y=lgx的圖象,如圖所示.?dāng)?shù)形結(jié)合,知x2<x1<x3.題型三對(duì)數(shù)函數(shù)的性質(zhì)及應(yīng)用命題點(diǎn)1比較指數(shù)式、對(duì)數(shù)式大小例3(1)設(shè)a=log3e,b=e1.5,c=,則()A.b<a<c B.c<a<bC.c<b<a D.a(chǎn)<c<b答案D解析c==log34>log3e=a.又c=log34<log39=2,b=e1.5>2,∴a<c<b.(2)(2022·昆明一中月考)設(shè)a=log63,b=log126,c=log2412,則()A.b<c<a B.a(chǎn)<c<bC.a(chǎn)<b<c D.c<b<a答案C解析因?yàn)閍,b,c都是正數(shù),所以eq\f(1,a)=log36=1+log32,eq\f(1,b)=log612=1+log62,eq\f(1,c)=log1224=1+log122,因?yàn)閘og32=eq\f(lg2,lg3),log62=eq\f(lg2,lg6),log122=eq\f(lg2,lg12),且lg3<lg6<lg12,所以log32>log62>log122,即eq\f(1,a)>eq\f(1,b)>eq\f(1,c),所以a<b<c.命題點(diǎn)2解對(duì)數(shù)方程不等式例4若loga(a+1)<loga(2eq\r(a))<0(a>0,a≠1),則實(shí)數(shù)a的取值范圍是.答案eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4),1))解析依題意loga(a+1)<loga(2eq\r(a))<loga1,∴eq\b\lc\{\rc\(\a\vs4\al\co1(a>1,,a+1<2\r(a)<1))或eq\b\lc\{\rc\(\a\vs4\al\co1(0<a<1,,a+1>2\r(a)>1,))解得eq\f(1,4)<a<1.命題點(diǎn)3對(duì)數(shù)性質(zhì)的應(yīng)用例5已知函數(shù)f(x)=ln

eq\f(2x+1,2x-1),下列說(shuō)法正確的是________.(填序號(hào))①f(x)為奇函數(shù);②f(x)為偶函數(shù);③f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),+∞))上單調(diào)遞減;④f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,-\f(1,2)))上單調(diào)遞增.答案①③解析f(x)=ln

eq\f(2x+1,2x-1),令eq\f(2x+1,2x-1)>0,解得x>eq\f(1,2)或x<-eq\f(1,2),∴f(x)的定義域?yàn)閑q\b\lc\(\rc\)(\a\vs4\al\co1(-∞,-\f(1,2)))∪eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),+∞)),又f(-x)=ln

eq\f(-2x+1,-2x-1)=ln

eq\f(2x-1,2x+1)=lneq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2x+1,2x-1)))-1=-ln

eq\f(2x+1,2x-1)=-f(x),∴f(x)為奇函數(shù),故①正確,②錯(cuò)誤;又f(x)=ln

eq\f(2x+1,2x-1)=lneq\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(2,2x-1))),令t=1+eq\f(2,2x-1),t>0且t≠1,∴y=lnt,又t=1+eq\f(2,2x-1)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),+∞))上單調(diào)遞減,且y=lnt為增函數(shù),∴f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),+∞))上單調(diào)遞減,故③正確;又f(x)為奇函數(shù),∴f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,-\f(1,2)))上單調(diào)遞減,故④不正確.INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\左括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\左括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\左括.TIF"INET【備選INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\右括.TIF"INETINCLUDEPICTURE"D:\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材\\word\\右括.TIF"INETINCLUDEPICTURE"\\\\張春蘭\\e\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(打包)\\word\\右括.TIF"INET】1.(2022·安徽十校聯(lián)盟聯(lián)考)已知a=log23,b=2log53,c=,則a,b,c的大小關(guān)系為()A.a(chǎn)>c>b B.a(chǎn)>b>cC.b>a>c D.c>b>a答案B解析∵a=log23>1,b=2log53=log59>1,c=<0,∴eq\f(a,b)=eq\f(log23,log59)=eq\f(lg3,lg2)×eq\f(lg5,lg9)=eq\f(lg3,lg2)×eq\f(lg5,2lg3)=eq\f(lg5,2lg2)=eq\f(lg5,lg4)=log45>1,∴a>b,∴a>b>c.2.若f(x)=lg(x2-2ax+1+a)在區(qū)間(-∞,1]上單調(diào)遞減,則a的取值范圍為()A.[1,2) B.[1,2]C.[1,+∞) D.[2,+∞)答案A解析令函數(shù)g(x)=x2-2ax+1+a=(x-a)2+1+a-a2,對(duì)稱軸為x=a,要使函數(shù)f(x)在(-∞,1]上單調(diào)遞減,則有eq\b\lc\{\rc\(\a\vs4\al\co1(g1>0,,a≥1,))即eq\b\lc\{\rc\(\a\vs4\al\co1(2-a>0,,a≥1,))解得1≤a<2,即a∈[1,2).思維升華求與對(duì)數(shù)函數(shù)有關(guān)的函數(shù)值域和復(fù)合函數(shù)的單調(diào)性問(wèn)題,必須弄清三個(gè)問(wèn)題:一是定義域;二是底數(shù)與1的大小關(guān)系;三是復(fù)合函數(shù)的構(gòu)成.跟蹤訓(xùn)練3(1)若實(shí)數(shù)a,b,c滿足loga2<logb2<logc2<0,則下列關(guān)系中正確的是()A.a(chǎn)<b<c B.b<a<cC.c<b<a D.a(chǎn)<c<b答案C解析根據(jù)不等式的性質(zhì)和對(duì)數(shù)的換底公式可得eq\f(1,log2a)<eq\f(1,log2b)<eq\f(1,log2c)<0,即log2c<log2b<log2a<0,可得c<b<a<1.(2)若函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(logax,x≥2,,-logax-4,0<x<2))存在最大值,則實(shí)數(shù)a的取值范圍是.答案eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(\r(2),2)))解析當(dāng)a>1時(shí),函數(shù)f(x)=logax在[2,+∞)上單調(diào)遞增,無(wú)最值,不滿足題意,故0<a<1.當(dāng)x≥2時(shí),函數(shù)f(x)=logax在[2,+∞)上單調(diào)遞減,f(x)≤f(2)=loga2;當(dāng)0<x<2時(shí),f(x)=-logax-4在(0,2)上單調(diào)遞增,f(x)<f(2)=-loga2-4,則loga2≥-loga2-4,即loga2≥-2=logaa-2,即eq\f(1,a2)≥2,0<a≤eq\f(\r(2),2),故實(shí)數(shù)a的取值范圍是eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(\r(2),2))).課時(shí)精練1.(2022·重慶巴蜀中學(xué)月考)設(shè)a=eq\f(1,2),b=log7eq\r(5),c=log87,則()A.a(chǎn)>b>c B.a(chǎn)>c>bC.c>b>a D.c>a>b答案D解析a=eq\f(1,2)=log7eq\r(7)>b=log7eq\r(5),c=log87>log8eq\r(8)=eq\f(1,2)=a,所以c>a>b.2.若函數(shù)y=f(x)是函數(shù)y=ax(a>0,且a≠1)的反函數(shù)且f(2)=1,則f(x)等于()A.log2xB.eq\f(1,2x)C.D.2x-2答案A解析函數(shù)y=ax(a>0,且a≠1)的反函數(shù)是f(x)=logax,又f(2)=1,即loga2=1,所以a=2.故f(x)=log2x.3.函數(shù)y=loga(x+c)(a,c為常數(shù),其中a>0,a≠1)的圖象如圖所示,則下列結(jié)論成立的是()①a>1;②0<c<1;③0<a<1;④c>1.A.①② B.①④C.②③ D.③④答案C解析由圖象可知函數(shù)為減函數(shù),∴0<a<1,令y=0得loga(x+c)=0,x+c=1,x=1-c,由圖象知0<1-c<1,∴0<c<1.4.(2022·銀川模擬)我們知道:人們對(duì)聲音有不同的感覺(jué),這與它的強(qiáng)度有關(guān)系.一般地,聲音的強(qiáng)度用(W/m2)表示,但在實(shí)際測(cè)量時(shí),聲音的強(qiáng)度水平常用L1=10lg

eq\f(I,I0)(單位:分貝,L1≥0,其中I0=1×10-12是人們平均能聽(tīng)到的最小強(qiáng)度,是聽(tīng)覺(jué)的開(kāi)端).某新建的小區(qū)規(guī)定:小區(qū)內(nèi)公共場(chǎng)所的聲音的強(qiáng)度水平必須保持在50分貝以下,則聲音強(qiáng)度I的取值范圍是()A.(-∞,10-7) B.[10-12,10-5)C.[10-12,10-7) D.(-∞,10-5)答案C解析由題意可得,0≤10·lg

eq\f(I,I0)<50,即0≤lgI-lg(1×10-12)<5,所以-12≤lgI<-7,解得10-12≤I<10-7,所以聲音強(qiáng)度I的取值范圍是[10-12,10-7).5.設(shè)函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(log2x,x>0,,-x,x<0.))若f(a)>f(-a),則實(shí)數(shù)a的取值范圍是()A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)答案C解析由題意得eq\b\lc\{\rc\(\a\vs4\al\co1(a>0,,log2a>))或eq\b\lc\{\rc\(\a\vs4\al\co1(a<0,,-a>log2-a,))解得a>1或-1<a<0.6.(2022·漢中模擬)已知log23=a,3b=7,則log2156等于()A.eq\f(ab+3,a+ab) B.eq\f(3a+b,a+ab)C.eq\f(ab+3,a+b) D.eq\f(b+3,a+ab)答案A解析由3b=7,可得log37=b,所以log2156=eq\f(log37×23,log33×7)=eq\f(log37+log323,log33+log37)=eq\f(b+3×\f(1,a),1+b)=eq\f(ab+3,a+ab).7.(2022·海口模擬)log3eq\r(27)+lg25+lg4++的值等于.答案eq\f(7,2)解析原式=log3+lg52+lg22+2+=eq\f(3,2)+2lg5+2lg2+2+(-2)=eq\f(3,2)+2(lg5+lg2)+2+(-2)=eq\f(3,2)+2+2+(-2)=eq\f(7,2).8.已知函數(shù)y=loga(x-3)-1的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)是.答案(4,-1)解析令x-3=1,則x=4,∴y=loga1-1=-1,故點(diǎn)P的坐標(biāo)為(4,-1).9.設(shè)f(x)=log2(ax-bx),且f(1)=1,f(2)=log212.(1)求a,b的值;(2)當(dāng)x∈[1,2]時(shí),求f(x)的最大值.解(1)因?yàn)閒(x)=log2(ax-bx),且f(1)=1,f(2)=log212,所以eq\b\lc\{\rc\(\a\vs4\al\co1(log2a-b=1,,log2a2-b2=log212,))即eq\b\lc\{\rc\(\a\vs4\al\co1(a-b=2,,a2-b2=12,))解得a=4,b=2.(2)由(1)得f(x)=log2(4x-2x),令t=4x-2x,則t=4x-2x=eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,2)))2-eq\f(1,4),因?yàn)?≤x≤2,所以2≤2x≤4,所以eq\f(9,4)≤eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,2)))2≤eq\f(49,4),即2≤t≤12,因?yàn)閥=log2t在[2,12]上單調(diào)遞增,所以ymax=log212=2+log23,即函數(shù)f(x)的最大值為2+log23.10.(2022·棗莊模擬)已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0且a≠1.(1)判斷f(x)的奇偶性并予以證明;(2)當(dāng)a>1時(shí),求使f(x)>0的x的解集.解(1)f(x)是奇函數(shù),證明如下:因?yàn)閒(x)=loga(x+1)-loga(1-x),所以eq\b\lc\{\rc\(\a\vs4\al\co1(x+1>0,,1-x>0,))解得-1<x<1,f(x)的定義域?yàn)?-1,1).f(-x)=loga(-x+1)-loga(1+x)=-[loga(1+x)-loga(-x+1)]=-f(x),故f(x)是奇函數(shù).(2)因?yàn)楫?dāng)a>1時(shí),y=loga(x+1)是增函數(shù),y=loga(1-x)是減函數(shù),所以當(dāng)a>1時(shí),f(x)在定義域(-1,1)內(nèi)是增函數(shù),f(x)>0即loga(x+1)-loga(1-x)>0,logaeq\f(x+1,1-x)>0,eq\f(x+1,1-x)>1,eq\f(2x,1-x)>0,2x(1-x)>0,解得0<x<1,故使f(x)>0的x的解集為(0,1).11.設(shè)a=log0.20.3,b=log20.3,則()A.a(chǎn)+b<ab<0 B.a(chǎn)b<a+b<0C.a(chǎn)+b

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論