北京市首都師范大學附屬回龍觀育新學校2024年高二數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第1頁
北京市首都師范大學附屬回龍觀育新學校2024年高二數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第2頁
北京市首都師范大學附屬回龍觀育新學校2024年高二數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第3頁
北京市首都師范大學附屬回龍觀育新學校2024年高二數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第4頁
北京市首都師范大學附屬回龍觀育新學校2024年高二數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市首都師范大學附屬回龍觀育新學校2024年高二數(shù)學第一學期期末教學質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,滿足,則的最小值為()A.5 B.-3C.-5 D.-92.將數(shù)列中的各項依次按第一個括號1個數(shù),第二個括號2個數(shù),第三個括號4個數(shù),第四個括號8個數(shù),第五個括號16個數(shù),…,進行排列,,,…,則以下結(jié)論中正確的是()A.第10個括號內(nèi)的第一個數(shù)為1025 B.2021在第11個括號內(nèi)C.前10個括號內(nèi)一共有1025個數(shù) D.第10個括號內(nèi)的數(shù)字之和3.在四面體OABC中,點M在線段OA上,且,N為BC中點,已知,,,則等于()A. B.C. D.4.某中學舉行黨史學習教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機抽出名選手答題,則至少有名女同學被選中的概率是()A. B.C. D.5.某商場為了解銷售活動中某商品銷售量與活動時間之間的關(guān)系,隨機統(tǒng)計了某次銷售活動中的商品銷售量與活動時間,并制作了下表:活動時間銷售量由表中數(shù)據(jù)可知,銷售量與活動時間之間具有線性相關(guān)關(guān)系,算得線性回歸方程為,據(jù)此模型預(yù)測當時,的值為()A B.C. D.6.在空間中,“直線與沒有公共點”是“直線與異面”的()A.必要不充分條件 B.充要條件C.充分不必要條件 D.既不充分也不必要條件7.下列命題中的假命題是()A.,B.存在四邊相等的四邊形不是正方形C.“存在實數(shù),使”的否定是“不存在實數(shù),使”D.若且,則,至少有一個大于8.已知兩個向量,,且,則的值為()A.-2 B.2C.10 D.-109.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)10.已知是兩個數(shù)1,9的等比中項,則圓錐曲線的離心率為()A.或 B.或C. D.11.設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg12.已知橢圓的離心率為,直線與橢圓交于兩點,為坐標原點,且,則橢圓的方程為A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,正方形ABCD的邊長為8,取正方形ABCD各邊的中點E,F(xiàn),G,H,作第2個正方形EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL.依此方法一直繼續(xù)下去.①從正方形ABCD開始,第7個正方形的邊長為___;②如果這個作圖過程可以一直繼續(xù)下去,那么作到第n個正方形,這n個正方形的面積之和為___.14.《九章算術(shù)》是人類科學史上應(yīng)用數(shù)學的最早巔峰,書中有這樣一道題:“今有大夫、不更,簪裹、上造、公士,凡五人,共獵得五只鹿,欲以爵次分之,問各得幾何?”其譯文是“現(xiàn)在有從高到低依次為大夫,不更,簪裹,上造、公士的五個不同爵次的官員,共獵得五只鹿,要按爵次商低分(即根據(jù)爵次高低分配得到的獵物數(shù)依次成等差數(shù)列),向各得多少鹿?”已知上造分得只鹿,則不更所得的鹿數(shù)為_______只15.已知,滿足約束條件則的最小值為__________16.作邊長為6的正三角形的內(nèi)切圓,半徑記為,在這個圓內(nèi)作內(nèi)接正三角形,然后再作新三角形的內(nèi)切圓.如此下去,第n個正三角形的內(nèi)切圓半徑記為,則______,現(xiàn)有1個半徑為的圓,2個半徑為的圓,……,個半徑為的圓,n個半徑為的圓,則所有這些圓的面積之和為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在正方體中,E,F(xiàn)分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值18.(12分)已知,直線過且與交于兩點,過點作直線的平行線交于點(1)求證:為定值,并求點的軌跡的方程;(2)設(shè)動直線與相切于點,且與直線交于點,在軸上是否存在定點,使得以為直徑的圓恒過定點?若存在,求出的坐標;若不存在,說明理由19.(12分)如圖,四邊形是矩形,平面平面,為中點,,,(1)證明:平面平面;(2)求二面角的余弦值20.(12分)已知拋物線的焦點為F,點在C上(1)求p的值及F的坐標;(2)過F且斜率為的直線l與C交于A,B兩點(A在第一象限),求21.(12分)已知函數(shù).(1)求曲線在處的切線方程;(2)求曲線過點的切線方程.22.(10分)如圖,正方體的棱長為4,E,F(xiàn)分別是上的點,且.(1)求與平面所成角的正切值;(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】作出可行域,作出目標函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解【題目詳解】解:作出可行域,如圖內(nèi)部(含邊界),作直線,在中,,當直線向下平移時,增大,因此把直線向上平移,當直線過點時,故選:D2、D【解題分析】由第10個括號內(nèi)的第一個數(shù)為數(shù)列的第512項,最后一個數(shù)為數(shù)列的第1023項,進行分析求解即可【題目詳解】由題意可得,第個括號內(nèi)有個數(shù),對于A,由題意得前9個括號內(nèi)共有個數(shù),所以第10個括號內(nèi)的第一個數(shù)為數(shù)列的第512項,所以第10個括號內(nèi)的第一個數(shù)為,所以A錯誤,對于C,前10個括號內(nèi)共有個數(shù),所以C錯誤,對于B,令,得,所以2021為數(shù)列的第1011項,由AC選項的分析可得2021在第10個括號內(nèi),所以B錯誤,對于D,因為第10個括號內(nèi)的第一個數(shù)為,最后一個數(shù)為,所以第10個括號內(nèi)的數(shù)字之和為,所以D正確,故選:D【題目點撥】關(guān)鍵點點睛:此題考查數(shù)列的綜合應(yīng)用,解題的關(guān)鍵是由題意確定出第10個括號內(nèi)第一個數(shù)和最后一個數(shù)分別對應(yīng)數(shù)列的哪一項,考查分析問題的能力,屬于較難題3、B【解題分析】根據(jù)空間向量基本定理結(jié)合已知條件求解【題目詳解】因為N為BC中點,所以,因為M在線段OA上,且,所以,所以,故選:B4、D【解題分析】現(xiàn)場選名選手,共種情況,設(shè),,,四位同學為男同學則沒有女同學被選中的情況,共有6種,利用對立事件進行求解,即可得到答案;【題目詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學為男同學則沒有女同學被選中的情況是:,,,,,共種,則至少有一名女同學被選中的概率為.故選:.5、C【解題分析】求出樣本中心點的坐標,代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【題目詳解】由表格中的數(shù)據(jù)可得,,將樣本中心點的坐標代入回歸直線方程可得,解得,所以,回歸直線方程為,故當時,.故選:C.6、A【解題分析】由于在空間中,若直線與沒有公共點,則直線與平行或異面,再根據(jù)充分、必要條件的概念判斷,即可得到結(jié)果.【題目詳解】在空間中,若直線與沒有公共點,則直線與平行或異面.故“直線與沒有公共點”是“直線與異面”的必要不充分條件.故選:A.7、C【解題分析】利用簡易邏輯的知識逐一判斷即可.【題目詳解】,故A正確;菱形的四邊相等,但不一定是正方形,故B正確;“存在實數(shù),使”的否定是“對任意的實數(shù)都有”,故C錯誤;假設(shè)且,則,與矛盾,故D正確;故選:C8、C【解題分析】根據(jù)向量共線可得滿足的關(guān)系,從而可求它們的值,據(jù)此可得正確的選項.【題目詳解】因為,故存在常數(shù),使得,所以,故,所以,故選:C.9、C【解題分析】根據(jù)莖葉圖依次計算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【題目詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.10、A【解題分析】根據(jù)題意可知,當時,根據(jù)橢圓離心率公式,即可求出結(jié)果;當時,根據(jù)雙曲線離心率公式,即可求出結(jié)果.【題目詳解】因為是兩個數(shù)1,9的等比中項,所以,所以,當時,圓錐曲線,其離心率為;當時,圓錐曲線,其離心率為;綜上,圓錐曲線的離心率為或.故選:A.11、D【解題分析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預(yù)測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預(yù)測其體重約為0.85×170﹣85.71=58.79kg,D錯誤故選D12、D【解題分析】根據(jù)等腰直角三角形的性質(zhì)可得,將代入橢圓方程,結(jié)合離心率為以及性質(zhì)列方程組求得與的值,從而可得結(jié)果.【題目詳解】設(shè)直線與橢圓在第一象限的交點為,因為,所以,即,由可得,,故所求橢圓的方程為.故選D.【題目點撥】本題主要考查橢圓的標準方程與性質(zhì),以及橢圓離心率的應(yīng)用,意在考查對基礎(chǔ)知識掌握的熟練程度,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、①.1②.【解題分析】根據(jù)題意,正方形邊長成等比數(shù)列,正方形的面積等于邊長的平方可得,然后根據(jù)等比數(shù)列的通項公式及等比數(shù)列的前n項和的公式即可求解.【題目詳解】設(shè)第n個正方形的邊長為,第n個正方形的面積為,則第n個正方形的對角線長為,所以第n+1個正方形的邊長為,,∴數(shù)列{}是首項為,公比為的等比數(shù)列,,∴,即第7個正方形的邊長為1;∴數(shù)列{}是首項為,公比為的等比數(shù)列,故答案為:1;.14、【解題分析】由題意分析,利用等差數(shù)列基本量代換列方程組即可求解.【題目詳解】記大夫,不更,簪裹,上造、公士得到的獵物數(shù)為等差數(shù)列,公差為d,由題意可得,即,解得,∴故答案為:15、2【解題分析】由題意,根據(jù)約束條件作出可行域圖,如圖所示,將目標函數(shù)轉(zhuǎn)化為,作出其平行直線,并將其在可行域內(nèi)平行上下移動,當移到頂點時,在軸上的截距最小,即.16、①;②..【解題分析】設(shè)第n個三角形的邊長為,進而根據(jù)題意求出,然后根據(jù)等面積法求出,再求出;設(shè)n個半徑為的圓的面積為并求出,進而運用錯位相減法求得答案.【題目詳解】如示意圖1,設(shè)第n個三角形的邊長為,易得,則是以6為首項,為公比的等比數(shù)列,所以.如示意圖2,易得:,,所以,所以.設(shè)n個半徑為的圓的面積為,則,記所有圓的面積之和為,則,所以,兩式相減得:,即.故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解題分析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點,G是中點,∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,??;設(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴18、(1)證明見解析,()(2)存在,【解題分析】(1)根據(jù)題意和橢圓的定義可知點的軌跡是以A,為焦點的橢圓,且,,進而得出橢圓標準方程;(2)設(shè),聯(lián)立動直線方程和橢圓方程并消元得出關(guān)于的一元二次方程,根據(jù)根的判別式可得點P和Q的坐標,結(jié)合,利用平面向量的坐標表示列出方程組,即可解出點M的坐標.【小問1詳解】圓A:,∵,∴,又,∴∴,∴,故∴點的軌跡是以A,為焦點的橢圓,且,∴,故:();【小問2詳解】由,得∴,故,設(shè),則,,故,,由可得:由對,恒成立∴故存在使得以為直徑的圓恒過定點19、(1)證明見解析;(2)【解題分析】(1)利用面面垂直的性質(zhì),證得平面,進而可得,平面即可得證;(2)在平面ABC內(nèi)過點A作Ax⊥AB,以A為原點建立空間直角坐標系,借助空間向量而得解.【題目詳解】(1)因為,為中點,所以,因為是矩形,所以,因為平面平面,平面平面,平面,所以平面,因為平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC內(nèi)過點A作Ax⊥AB,由(1)知,平面,故以點A為坐標原點,分別以,,的方向為軸,軸,軸的正方向,建立空間直角坐標系,如圖:則,,,,,則,所以,,,,由(1)知,為平面的一個法向量,設(shè)平面的法向量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論