版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024學(xué)年山東省泰安一中高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列導(dǎo)數(shù)運(yùn)算正確的是()A. B.C. D.2.已知函數(shù)的導(dǎo)數(shù)為,則等于()A.0 B.1C.2 D.43.已知函數(shù)在處取得極值,則()A. B.C. D.4.若,則下列等式一定成立的是()A. B.C. D.5.已知正方形ABCD的邊長(zhǎng)為2,E,F(xiàn)分別為CD,CB的中點(diǎn),分別沿AE,AF將三角形ADE,ABF折起,使得點(diǎn)B,D恰好重合,記為點(diǎn)P,則AC與平面PCE所成角等于()A. B.C. D.6.設(shè)正數(shù)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)積為,且,則()A. B.C. D.7.已知,則下列說(shuō)法錯(cuò)誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是8.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S7=28,則a4=()A.4 B.7C.8 D.149.已知點(diǎn)P(5,3,6),直線l過(guò)點(diǎn)A(2,3,1),且一個(gè)方向向量為,則點(diǎn)P到直線l的距離為()A. B.C. D.10.已知是定義在上的函數(shù),且對(duì)任意都有,若函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,且,則()A. B.C. D.11.我國(guó)新冠肺炎疫情防控進(jìn)入常態(tài)化,各地有序進(jìn)行疫苗接種工作,下面是我國(guó)甲、乙兩地連續(xù)11天的疫苗接種指數(shù)折線圖,根據(jù)該折線圖,下列說(shuō)法不正確的是()A.這11天甲地指數(shù)和乙地指數(shù)均有增有減B.第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過(guò)80%C.在這11天期間,乙地指數(shù)的增量大于甲地指數(shù)的增量D.第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量12.已知點(diǎn)到直線的距離為1,則m的值為()A.或 B.或15C.5或 D.5或15二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左右焦點(diǎn)分別為,為橢圓上的一點(diǎn),與橢圓交于.若△的內(nèi)切圓與線段在其中點(diǎn)處相切,與切于,則橢圓的離心率為_(kāi)______14.直線l:y=-x+m與曲線有兩個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是_______.15.如圖,正方體的棱長(zhǎng)為1,C、D分別是兩條棱的中點(diǎn),A、B、M是頂點(diǎn),那么點(diǎn)M到截面ABCD的距離是____________.16.函數(shù)在處的切線方程是_________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列的前項(xiàng)和為,為等比數(shù)列,且,(1)求數(shù)列和的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和18.(12分)求下列函數(shù)的導(dǎo)數(shù):(1);(2).19.(12分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式:(2)設(shè).?dāng)?shù)列{}的前項(xiàng)和為,求證:20.(12分)已知拋物線:,直線過(guò)定點(diǎn).(1)若與僅有一個(gè)公共點(diǎn),求直線的方程;(2)若與交于A,B兩點(diǎn),直線OA,OB(其中О為坐標(biāo)原點(diǎn))的斜率分別為,,試探究在,,,中,運(yùn)算結(jié)果是否有為定值的?并說(shuō)明理由.21.(12分)2021年7月29日,中國(guó)游泳隊(duì)獲得了女子米自由泳接力決賽冠軍并打破世界紀(jì)錄.受奧運(yùn)精神的鼓舞,某游泳俱樂(lè)部組織100名游泳愛(ài)好者進(jìn)行自由泳1500米測(cè)試,并記錄他們的時(shí)間(單位:分鐘),將所得數(shù)據(jù)分成5組:,,,,,整理得到如圖所示的頻率分布直方圖.(1)求出直方圖中m的值;(2)利用樣本估計(jì)總體的思想,估計(jì)這100位游泳愛(ài)好者1500米自由泳測(cè)試時(shí)間的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表).22.(10分)已知梯形如圖甲所示,其中,,,四邊形是邊長(zhǎng)為1正方形,沿將四邊形折起,使得平面平面,得到如圖乙所示的幾何體(1)求證:平面;(2)若點(diǎn)在線段上,且與平面所成角的正弦值為,求線段的長(zhǎng)度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】利用基本初等函數(shù)的導(dǎo)數(shù)和復(fù)合函數(shù)的導(dǎo)數(shù),依次分析即得解【題目詳解】選項(xiàng)A,,錯(cuò)誤;選項(xiàng)B,,正確;選項(xiàng)C,,錯(cuò)誤;選項(xiàng)D,,錯(cuò)誤故選:B2、A【解題分析】先對(duì)函數(shù)求導(dǎo),然后代值計(jì)算即可【題目詳解】因?yàn)?,所?故選:A3、B【解題分析】根據(jù)極值點(diǎn)處導(dǎo)函數(shù)為零可求解.【題目詳解】因?yàn)?,則,由題意可知.經(jīng)檢驗(yàn)滿足題意故選:B4、D【解題分析】利用復(fù)數(shù)除法運(yùn)算和復(fù)數(shù)相等可用表示出,進(jìn)而得到之間關(guān)系.【題目詳解】,,,則.故選:D.5、A【解題分析】如圖,以PE,PF,PA分別為x,y,z軸建立空間直角坐標(biāo)系,利用空間向量求解【題目詳解】由題意得,因?yàn)檎叫蜛BCD的邊長(zhǎng)為2,E,F(xiàn)分別為CD,CB的中點(diǎn),所以,所以,所以所以PA,PE,PF三線互相垂直,故以PE,PF,PA分別為x,y,z軸建立空間直角坐標(biāo)系,則,,,,設(shè),則由,,,得,解得,則設(shè)平面的法向量為,則,令,則,因?yàn)?,所以AC與平面PCE所成角的正弦值,因?yàn)锳C與平面PCE所成角為銳角,所以AC與平面PCE所成角為,故選:A6、B【解題分析】當(dāng)可求得;當(dāng)時(shí),可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式可推導(dǎo)得到,由求得后,利用可求得結(jié)果.【題目詳解】當(dāng)時(shí),,解得:;當(dāng)時(shí),由得:,即,,數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,,解得:,,經(jīng)檢驗(yàn):滿足,,故選:B.7、D【解題分析】利用空間角的意義結(jié)合空間向量求空間角的方法逐一分析各選項(xiàng)即可判斷作答.【題目詳解】對(duì)于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對(duì)于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯(cuò)誤;對(duì)于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D8、A【解題分析】由等差數(shù)列的性質(zhì)可知,再代入等差數(shù)列的前項(xiàng)和公式求解.【題目詳解】數(shù)列{an}是等差數(shù)列,,那么,所以.故選:A.【題目點(diǎn)撥】本題考查等差數(shù)列的性質(zhì)和前項(xiàng)和,屬于基礎(chǔ)題型.9、B【解題分析】根據(jù)向量和直線l的方向向量的關(guān)系即可求出點(diǎn)P到直線l的距離.【題目詳解】由題意,,,,,,到直線的距離為.故選:B.10、D【解題分析】令,代入可得,即得,再由函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,判斷得函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,即,則化簡(jiǎn)可得,即函數(shù)的周期為,從而代入求解.【題目詳解】令,得,即,所以,因?yàn)楹瘮?shù)的圖象關(guān)于點(diǎn)對(duì)稱,所以函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,即,所以,即,可得,則,故選:D.第II卷(非選擇題11、C【解題分析】由折線圖逐項(xiàng)分析得到答案.【題目詳解】對(duì)于選項(xiàng)A,從折線圖中可以直接觀察出甲地和乙地的指數(shù)有增有減,故選項(xiàng)A正確;對(duì)于選項(xiàng)B,從第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過(guò)80%,故選項(xiàng)B正確;對(duì)于選項(xiàng)C,從折線圖上可以看出這11天甲的增量大于乙的增量,故選項(xiàng)C錯(cuò)誤;對(duì)于選項(xiàng)D,從折線圖上可以看出第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量,故D正確;故選:C.12、D【解題分析】利用點(diǎn)到直線距離公式即可得出.【題目詳解】解:點(diǎn)到直線的距離為1,解得:m=15或5故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】利用橢圓及三角形內(nèi)切圓的性質(zhì)可得、,結(jié)合等邊三角形的性質(zhì)得的大小,在△中應(yīng)用余弦定理得到a、c的齊次式,即可求離心率.【題目詳解】由題意知:由內(nèi)切圓的性質(zhì)得:,由橢圓的性質(zhì),而,∴,∴由內(nèi)切圓的性質(zhì)得:再由橢圓的性質(zhì),得:,由此,△為等邊三角形,可得,在△中,由余弦定理得:,解得,則,故答案為:.14、【解題分析】曲線表示圓的右半圓,結(jié)合的幾何意義,得出實(shí)數(shù)m的取值范圍.【題目詳解】曲線表示圓的右半圓,當(dāng)直線與相切時(shí),,即,由表示直線的截距,因?yàn)橹本€l與曲線有兩個(gè)公共點(diǎn),由圖可知,所以.故答案為:.15、【解題分析】由題意建立空間直角坐標(biāo)系,然后結(jié)合點(diǎn)面距離公式即可求得點(diǎn)M到截面ABCD的距離.【題目詳解】建立如圖所示的空間直角坐標(biāo)系,可得A(0,0,0),B(1,1,0),D(0,,1),M(0,1,0),∴(0,1,0),(1,1,0),(0,,1),設(shè)(x,y,z)為平面ABCD的法向量,則,取y=﹣2,可得x=2,z=1,∴(2,﹣2,1),∴M到截面ABCD的距離d故答案為.【題目點(diǎn)撥】本題主要考查空間直角坐標(biāo)系及其應(yīng)用,點(diǎn)面距離的計(jì)算等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16、【解題分析】求得,利用導(dǎo)數(shù)的幾何意義,結(jié)合直線的點(diǎn)斜式方程,即可求得結(jié)果.【題目詳解】因?yàn)?,則,,,故在處的切線方程是,整理得:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)【解題分析】(1)由已知利用遞推公式,可得,代入分別可求數(shù)列的首項(xiàng),公比,從而可求.(2)由(1)可得,利用乘“公比”錯(cuò)位相減法求和【題目詳解】解:(1)當(dāng)時(shí),,當(dāng)時(shí),滿足上式,故的通項(xiàng)式為設(shè)的公比為,由已知條件知,,,所以,,即(2),兩式相減得:【題目點(diǎn)撥】本題考查等差數(shù)列、等比數(shù)列的求法,錯(cuò)位相減法求數(shù)列通項(xiàng),屬于中檔題.18、(1);(2).【解題分析】(1)根據(jù)導(dǎo)數(shù)的加法運(yùn)算法則,結(jié)合常見(jiàn)函數(shù)的導(dǎo)數(shù)進(jìn)行求解即可;(2)根據(jù)導(dǎo)數(shù)的加法和乘法的運(yùn)算法則,結(jié)合常見(jiàn)函數(shù)的導(dǎo)數(shù)進(jìn)行求解即可.【小問(wèn)1詳解】;【小問(wèn)2詳解】.19、(1);(2)證明見(jiàn)解析.【解題分析】(1)設(shè)等差數(shù)列的公差為,則,根據(jù)題意可得出關(guān)于的方程,求出的值,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)相消法求出,即可證得結(jié)論成立.【小問(wèn)1詳解】解:設(shè)等差數(shù)列的公差為,則,由題意可得,即,整理可得,,解得,因此,.【小問(wèn)2詳解】證明:,因此,,故原不等式得證.20、(1)或或(2)為定值,而,,均不為定值【解題分析】(1)過(guò)拋物線外一定點(diǎn)的直線恰好與該拋物線只有一個(gè)交點(diǎn),則分兩類分別討論,一是直線與拋物線的對(duì)稱軸平行,二是直線與拋物線相切;(2)聯(lián)立直線的方程與拋物線的方程,根據(jù)韋達(dá)定理,分別表示出,,,為直線斜率的形式,便可得出結(jié)果.【小問(wèn)1詳解】過(guò)點(diǎn)的直線與拋物線僅有一個(gè)公共點(diǎn),則該直線可能與拋物線的對(duì)稱軸平行,也可能與拋物線相切,下面分兩種情況討論:當(dāng)直線可能與拋物線的對(duì)稱軸平行時(shí),則有:當(dāng)直線與拋物線相切時(shí),由于點(diǎn)在軸上方,且在拋物線外,則存在兩條直線與拋物線相切:易知:是其中一條直線另一條直線與拋物線上方相切時(shí),不妨設(shè)直線的斜率為,則有:聯(lián)立直線與拋物線可得:可得:則有:解得:故此時(shí)的直線的方程為:綜上,直線的方程為:或或【小問(wèn)2詳解】若與交于A,B兩點(diǎn),分別設(shè)其坐標(biāo)為,,且由(1)可知直線要與拋物線有兩個(gè)交點(diǎn),則直線的斜率存在且不為,不妨設(shè)直線的斜率為,則有:聯(lián)立直線與拋物線可得:可得:,即有:根據(jù)韋達(dá)定理可得:,則有:,下面分別說(shuō)明各項(xiàng)是否為定值:,故運(yùn)算結(jié)果為定值;,故運(yùn)算結(jié)果不為定值;,故運(yùn)算結(jié)果不為定值;,故運(yùn)算結(jié)果不為定值.綜上,可得:為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同模板城鎮(zhèn)供熱特許經(jīng)營(yíng)協(xié)議范本
- 2025買車不過(guò)戶合同協(xié)議書
- 家用智能設(shè)備安全及緊急控制策略
- 課題申報(bào)參考:馬克思政治經(jīng)濟(jì)學(xué)批判視域中的數(shù)字勞動(dòng)研究
- 課題申報(bào)參考:鏈主企業(yè)數(shù)字化提升產(chǎn)業(yè)鏈自主可控能力的機(jī)制與路徑研究
- 科技創(chuàng)業(yè)的挑戰(zhàn)與應(yīng)對(duì)策略研究
- 用知識(shí)武裝孩子為孩子打造一個(gè)安全的成長(zhǎng)環(huán)境
- 2024年收獲機(jī)械項(xiàng)目項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2024年高純石英纖維正交三向織物項(xiàng)目項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 教育領(lǐng)域的創(chuàng)新思維培養(yǎng)方案與實(shí)踐
- 消防產(chǎn)品目錄(2025年修訂本)
- 地方性分異規(guī)律下的植被演替課件高三地理二輪專題復(fù)習(xí)
- 光伏項(xiàng)目風(fēng)險(xiǎn)控制與安全方案
- 9.2提高防護(hù)能力教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- 催收培訓(xùn)制度
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理體系 審核與認(rèn)證機(jī)構(gòu)要求》中文版(機(jī)翻)
- 2024年廣東省高考地理真題(解析版)
- 2024高考物理廣東卷押題模擬含解析
- 人教版五年級(jí)上冊(cè)數(shù)學(xué)簡(jiǎn)便計(jì)算大全600題及答案
- GB/T 15945-1995電能質(zhì)量電力系統(tǒng)頻率允許偏差
- GB 32311-2015水電解制氫系統(tǒng)能效限定值及能效等級(jí)
評(píng)論
0/150
提交評(píng)論