鄂州市重點(diǎn)中學(xué)2024年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第1頁(yè)
鄂州市重點(diǎn)中學(xué)2024年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第2頁(yè)
鄂州市重點(diǎn)中學(xué)2024年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第3頁(yè)
鄂州市重點(diǎn)中學(xué)2024年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第4頁(yè)
鄂州市重點(diǎn)中學(xué)2024年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

鄂州市重點(diǎn)中學(xué)2024年高二上數(shù)學(xué)期末統(tǒng)考試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則下列不等式一定成立的是()A B.C. D.2.設(shè)正實(shí)數(shù),滿足(其中為正常數(shù)),若的最大值為3,則()A.3 B.C. D.3.已知橢圓的左頂點(diǎn)為,上頂點(diǎn)為,右焦點(diǎn)為,若,則橢圓的離心率的取值范圍是()A. B.C. D.4.在長(zhǎng)方體中,,,分別是棱,的中點(diǎn),則異面直線,的夾角為()A. B.C. D.5.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.276.已知P是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn)且,則的面積是()A. B.2C. D.17.定義焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線為一對(duì)相關(guān)曲線.已知,是一對(duì)相關(guān)曲線的焦點(diǎn),Р是這對(duì)相關(guān)曲線在第一象限的交點(diǎn),則點(diǎn)Р與以為直徑的圓的位置關(guān)系是()A.在圓外 B.在圓上C.在圓內(nèi) D.不確定8.已知橢圓:與雙曲線:有相同的焦點(diǎn)、,橢圓的離心率為,雙曲線的離心率為,點(diǎn)P為橢圓與雙曲線的交點(diǎn),且,則的最大值為()A. B.C. D.9.橢圓:與雙曲線:的離心率之積為2,則雙曲線的漸近線方程為()A. B.C. D.10.已知,若,則()A. B.C. D.11.下列直線中,傾斜角為銳角的是()A. B.C. D.12.在中,角A,B,C所對(duì)的邊分別為a,b,c,若,,的面積為10,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過(guò)點(diǎn),的直線方程(一般式)為_(kāi)__________.14.已知直線與直線平行,則實(shí)數(shù)______15.如圖,在三棱錐P–ABC的平面展開(kāi)圖中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=______________.16.已知幾何體如圖所示,其中四邊形ABCD,CDGF,ADGE均為正方形,且邊長(zhǎng)為1,點(diǎn)M在DG上,若直線MB與平面BEF所成的角為45°,則___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線與直線交于點(diǎn).(1)求過(guò)點(diǎn)且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過(guò)點(diǎn)并且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線的方程.18.(12分)已知數(shù)列與滿足(1)若,且,求數(shù)列的通項(xiàng)公式;(2)設(shè)的第k項(xiàng)是數(shù)列的最小項(xiàng),即恒成立.求證:的第k項(xiàng)是數(shù)列的最小項(xiàng);(3)設(shè).若存在最大值M與最小值m,且,試求實(shí)數(shù)的取值范圍19.(12分)已知橢圓過(guò)點(diǎn),且離心率為.(1)求橢圓的方程;(2)過(guò)作斜率分別為的兩條直線,分別交橢圓于點(diǎn),且,證明:直線過(guò)定點(diǎn).20.(12分)如圖,在正方體中,是棱的中點(diǎn).(1)試判斷直線與平面的位置關(guān)系,并說(shuō)明理由;(2)求證:直線面.21.(12分)如圖,四棱錐中,,.(1)證明:平面;(2)在線段上是否存在一點(diǎn),使直線與平面所成角的正弦值等于?22.(10分)為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,鼓勵(lì)全民閱讀經(jīng)典書(shū)籍,某市舉行閱讀月活動(dòng),現(xiàn)統(tǒng)計(jì)某街道約10000人在該活動(dòng)月每人每日平均閱讀時(shí)間(分鐘)的頻率分布直方圖如圖:(1)求x的值;(2)從該街道任選1人,則估計(jì)這個(gè)人的每日平均閱讀時(shí)間超過(guò)60分鐘的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】運(yùn)用不等式的性質(zhì)及舉反例的方法可求解.【題目詳解】對(duì)于A,如,滿足條件,但不成立,故A不正確;對(duì)于B,因?yàn)?,所以,所以,故B正確;對(duì)于C,因?yàn)椋?,所以不成立,故C不正確;對(duì)于D,因?yàn)?,所以,所以,故D不正確.故選:B2、D【解題分析】由于,,為正數(shù),且,所以利用基本不等式可求出結(jié)果【題目詳解】解:因?yàn)檎龑?shí)數(shù),滿足(其中為正常數(shù)),所以,則,所以,所以故選:D.3、B【解題分析】根據(jù)題意得到,根據(jù),化簡(jiǎn)得到,進(jìn)而得到離心率的不等式,即可求解.【題目詳解】由題意,橢圓的左頂點(diǎn)為,上頂點(diǎn)為,所以,,因?yàn)椋傻?,即,又由,可得,可得,解得,又因?yàn)闄E圓的離心率,所以,即橢圓的離心率為.故選:B.【題目點(diǎn)撥】求解橢圓或雙曲線離心率的三種方法:1、定義法:通過(guò)已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過(guò)取特殊值或特殊位置,求出離心率.4、C【解題分析】設(shè)出長(zhǎng)度,建立空間直角坐標(biāo)系,根據(jù)向量求異面直線所成角即可.【題目詳解】如下圖所示,以,,所在直線方向,,軸,建立空間直角坐標(biāo)系,設(shè),,,,,,所以,,設(shè)異面直線,的夾角為,所以,所以,即異面直線,的夾角為.故選:C.5、B【解題分析】根據(jù)等比數(shù)列的性質(zhì)可求.【題目詳解】因?yàn)闉榈缺葦?shù)列,設(shè)公比為,則,解得,又,所以.故選:B.6、A【解題分析】設(shè),先求出m、n,再利用面積公式即可求解.【題目詳解】在中,設(shè),則,解得:.因?yàn)?,所以,所以的面積是.故選:A7、A【解題分析】設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,橢圓的焦距為,雙曲線的實(shí)軸長(zhǎng)為,根據(jù)題意可得,設(shè),根據(jù)橢圓與雙曲線的定義將分別用表示,設(shè),再根據(jù)兩點(diǎn)的距離公式將點(diǎn)的坐標(biāo)用表示,從而可判斷出點(diǎn)與圓的位置關(guān)系.【題目詳解】解:設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,橢圓的焦距為,雙曲線的實(shí)軸長(zhǎng)為,設(shè)橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設(shè),則有,所以,設(shè),,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點(diǎn)到圓心的距離為,所以點(diǎn)Р在以為直徑的圓外.故選:A.8、B【解題分析】不妨設(shè)點(diǎn)為第一象限的交點(diǎn),結(jié)合橢圓與雙曲線的定義得到,進(jìn)而結(jié)合余弦定理得到,即,令然后結(jié)合三角函數(shù)即可求出結(jié)果.【題目詳解】不妨設(shè)點(diǎn)為第一象限的交點(diǎn),則由橢圓的定義可得,由雙曲線的定義可得,所以,因此,即,所以,即,令因此,其中,所以當(dāng)時(shí),有最大值,最大值為,故選:B.【題目點(diǎn)撥】一、橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=c2-a2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)9、C【解題分析】先求出橢圓的離心率,再由題意得出雙曲線的離心率,根據(jù)離心率即可求出漸近線斜率得解.【題目詳解】橢圓:的離心率為,則,依題意,雙曲線;的離心率為,而,于是得,解得:,所以雙曲線的漸近線方程為故選:C10、B【解題分析】先求出的坐標(biāo),然后由可得,再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求解即可.【題目詳解】因?yàn)?,,所以,因?yàn)?,所以,即,解?故選:B11、A【解題分析】先由直線方程找到直線的斜率,再推導(dǎo)出直線的傾斜角即可.【題目詳解】選項(xiàng)A:直線的斜率,則直線傾斜角為,是銳角,判斷正確;選項(xiàng)B:直線的斜率,則直線傾斜角為鈍角,判斷錯(cuò)誤;選項(xiàng)C:直線的斜率,則直線傾斜角為0,不是銳角,判斷錯(cuò)誤;選項(xiàng)D:直線沒(méi)有斜率,傾斜角為直角,不是銳角,判斷錯(cuò)誤.故選:A12、A【解題分析】由同角公式求出,根據(jù)三角形面積公式求出,根據(jù)余弦定理求出,根據(jù)正弦定理求出.【題目詳解】因?yàn)?,所以,因?yàn)?,的面積為10,所以,故,從而,解得,由正弦定理得:.故選:A.【題目點(diǎn)撥】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】利用兩點(diǎn)式方程可求直線方程.【題目詳解】∵直線過(guò)點(diǎn),,∴,∴,化簡(jiǎn)得.故答案為:.14、【解題分析】分類討論,兩種情況,結(jié)合直線平行的知識(shí)得出實(shí)數(shù).【題目詳解】當(dāng)時(shí),直線與直線垂直;當(dāng)時(shí),,則且,解得.故答案為:15、【解題分析】在中,利用余弦定理可求得,可得出,利用勾股定理計(jì)算出、,可得出,然后在中利用余弦定理可求得的值.【題目詳解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案為:.【題目點(diǎn)撥】本題考查利用余弦定理解三角形,考查計(jì)算能力,屬于中等題.16、##【解題分析】把該幾何體補(bǔ)成一個(gè)正方體,如圖,利用正方體的性質(zhì)證明面面垂直得出直線MB與平面BEF所成的角,然后計(jì)算可得【題目詳解】把該幾何體補(bǔ)成一個(gè)正方體,如圖,,連接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面內(nèi)的直線在平面上的射影是,即是直線MB與平面BEF所成的角,,,,故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);.(2)或.【解題分析】(1)首先求得交點(diǎn)坐標(biāo),然后利用待定系數(shù)法確定直線方程,再根據(jù)兩平行直線之間距離公式即可計(jì)算距離;(2)根據(jù)截距式方程的求法解答【小問(wèn)1詳解】由得設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程為∴兩平行線間的距離【小問(wèn)2詳解】當(dāng)直線過(guò)坐標(biāo)原點(diǎn)時(shí),直線的方程為,即;當(dāng)直線不過(guò)坐標(biāo)原點(diǎn)時(shí),設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程的方程為,即綜上所述,直線的方程為或18、(1)(2)證明見(jiàn)解析.(3)【解題分析】(1)由已知關(guān)系得出是等差數(shù)列及公差,然后可得通項(xiàng)公式;(2)由已知關(guān)系式,利用累加法證明對(duì)任意的,恒成立,即可得(3)由累加法求得通項(xiàng)公式,然后確定的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)的單調(diào)性,得出數(shù)列的最大項(xiàng)和最小項(xiàng),再利用已知范圍解得的范圍【小問(wèn)1詳解】由已知,是等差數(shù)列,公差為6,所以;【小問(wèn)2詳解】對(duì)任意的,恒成立,而恒成立,若,則,恒成立,同理若,也有恒成立,所以對(duì)任意的,恒成立,即是最小項(xiàng);【小問(wèn)3詳解】時(shí),,所以,也適合此式所以,若,則,,,即,,若,由于,且是正負(fù)相間,因此無(wú)最大項(xiàng)也無(wú)最小項(xiàng)因此有,所以的奇數(shù)項(xiàng)數(shù)列是遞增數(shù)列,且,,的偶數(shù)項(xiàng)數(shù)列是遞減數(shù)列,且,,所以的最大值是,最小項(xiàng)是,,由,又,所以19、(1);(2)證明見(jiàn)解析.【解題分析】(1)由離心率、過(guò)點(diǎn)和橢圓關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)當(dāng)直線斜率不存在時(shí),表示出兩點(diǎn)坐標(biāo),由兩點(diǎn)連線斜率公式表示出,整理可得直線為;當(dāng)直線斜率存在時(shí),設(shè),與橢圓方程聯(lián)立可得韋達(dá)定理的形式,代入中整理可得,由此可得直線所過(guò)定點(diǎn);綜合兩種情況可得直線過(guò)定點(diǎn).【題目詳解】(1)橢圓過(guò)點(diǎn),即,;,又,,橢圓的方程為:.(2)當(dāng)直線斜率不存在時(shí),設(shè)直線方程為,則,則,,解得:,直線方程為;當(dāng)直線斜率存在時(shí),設(shè)直線方程為,聯(lián)立方程組得:,設(shè),則,(*),則,將*式代入化簡(jiǎn)可得:,即,整理得:,代入直線方程得:,即,聯(lián)立方程組,解得:,,直線恒過(guò)定點(diǎn);綜上所述:直線恒過(guò)定點(diǎn).【題目點(diǎn)撥】思路點(diǎn)睛:本題考查直線與橢圓綜合應(yīng)用中的直線過(guò)定點(diǎn)問(wèn)題的求解,求解此類問(wèn)題的基本思路如下:①假設(shè)直線方程,與橢圓方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達(dá)定理的形式;③利用韋達(dá)定理表示出已知中的等量關(guān)系,代入韋達(dá)定理可整理得到變量間的關(guān)系,從而化簡(jiǎn)直線方程;④根據(jù)直線過(guò)定點(diǎn)的求解方法可求得結(jié)果.20、(1)平面AEC,理由見(jiàn)解析(2)證明見(jiàn)解析【解題分析】(1)以線面平行的判定定理去證明直線與平面平行即可;(2)以線面垂直的判定定理去證明直線面即可.【小問(wèn)1詳解】連接BD,設(shè),連接OE.在中,O、E分別是BD、的中點(diǎn),則.因?yàn)橹本€OE在平面AEC上,而直線不在平面AEC上,根據(jù)直線與平面平行的判定定理,得到直線平面AEC.【小問(wèn)2詳解】正方體中,故,又,故同理故,又,故又根據(jù)直線與平面垂直的判定定理,得直線平面.21、(1)詳解解析;(2)存在.【解題分析】(1)利用勾股定理證得,結(jié)合線面垂直的判定定理即可證得結(jié)論;(2)以A為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),,求得平面的法向量,利用已知條件建立關(guān)于的方程,進(jìn)而得解.【小問(wèn)1詳解】取中點(diǎn)為,連接,在中,,,,又,,所以,又,,而,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論