2022年初一數(shù)學上冊知識點歸納_第1頁
2022年初一數(shù)學上冊知識點歸納_第2頁
2022年初一數(shù)學上冊知識點歸納_第3頁
2022年初一數(shù)學上冊知識點歸納_第4頁
2022年初一數(shù)學上冊知識點歸納_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022年初一數(shù)學上冊知識點歸納知識點1:正、負數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負數(shù)。我們可以用正數(shù)與負數(shù)表示具有相反意義的量。知識點2:有理數(shù)的概念和分類:整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種:注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分數(shù)。知識點3:數(shù)軸的概念:像下面這樣規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。知識點4:絕對值的概念:幾何意義:數(shù)軸上表示a的點與原點的距離叫做數(shù)a的絕對值,記作|a|;代數(shù)意義:一個正數(shù)的絕對值是它的本身;一個負數(shù)的絕對值是它的相反數(shù);零的絕對值是零。注:任何一個數(shù)的絕對值均大于或等于0(即非負數(shù)).知識點5:相反數(shù)的概念:幾何意義:在數(shù)軸上分別位于原點的兩旁,到原點的距離相等的兩個點所表示的數(shù),叫做互為相反代數(shù)意義:符號不同但絕對值相等的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。知識點6:有理數(shù)大小的比較:有理數(shù)大小比較的基本法則:正數(shù)都大于零,負數(shù)都小于零,正數(shù)大于負數(shù)。數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的大。用絕對值進行有理數(shù)大小的比較:兩個正數(shù),絕對值大的正數(shù)大;兩個負數(shù),絕對值大的負數(shù)反而小。知識點7:有理數(shù)加法法則:(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;(2)異號兩數(shù)相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;(3)一個數(shù)與0相加,仍得這個數(shù).知識點8:有理數(shù)加法運算律:加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。知識點9:有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。知識點10:有理數(shù)加減混合運算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運算,都可以統(tǒng)一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。知識點11:乘法與除法1.乘法法則2.除法法則3.多個非零的數(shù)相乘除最后結果符號如何確定知識點12:倒數(shù)倒數(shù)概念如何求一個數(shù)的倒數(shù)?(注意與相反數(shù)的區(qū)別)知識點13:乘方乘方的概念,乘方的結果叫什么?認識底數(shù),指數(shù)正數(shù)的任何次冪是,零的任何次冪負數(shù)的偶次冪是奇次冪是知識點14:混合計算注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經(jīng)??紟С朔降挠嬎?知識點15:科學記數(shù)法科學記數(shù)法的概念?注意a的范圍七年級(上)數(shù)學知識點歸納與一、知識梳理知識點1:正、負數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負數(shù)。我們可以用正數(shù)與負數(shù)表示具有相反意義的量。知識點2:有理數(shù)的概念和分類:整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種:注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分數(shù)。知識點3:數(shù)軸的概念:像下面這樣規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。知識點4:絕對值的概念:幾何意義:數(shù)軸上表示a的點與原點的距離叫做數(shù)a的絕對值,記作|a|;代數(shù)意義:一個正數(shù)的絕對值是它的本身;一個負數(shù)的絕對值是它的相反數(shù);零的絕對值是零。注:任何一個數(shù)的絕對值均大于或等于0(即非負數(shù)).知識點5:相反數(shù)的概念:幾何意義:在數(shù)軸上分別位于原點的兩旁,到原點的距離相等的兩個點所表示的數(shù),叫做互為相反代數(shù)意義:符號不同但絕對值相等的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。知識點6:有理數(shù)大小的比較:有理數(shù)大小比較的基本法則:正數(shù)都大于零,負數(shù)都小于零,正數(shù)大于負數(shù)。數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的大。用絕對值進行有理數(shù)大小的比較:兩個正數(shù),絕對值大的正數(shù)大;兩個負數(shù),絕對值大的負數(shù)反而小。知識點7:有理數(shù)加法法則:(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;(2)異號兩數(shù)相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;(3)一個數(shù)與0相加,仍得這個數(shù).知識點8:有理數(shù)加法運算律:加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。知識點9:有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。知識點10:有理數(shù)加減混合運算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運算,都可以統(tǒng)一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。知識點11:乘法與除法1.乘法法則2.除法法則3.多個非零的數(shù)相乘除最后結果符號如何確定知識點12:倒數(shù)倒數(shù)概念如何求一個數(shù)的倒數(shù)?(注意與相反數(shù)的區(qū)別)知識點13:乘方乘方的概念,乘方的結果叫什么?認識底數(shù),指數(shù)知識點14:混合計算注意:運算順序是關鍵,計算時要嚴格按照順序運算.考試經(jīng)??紟С朔降挠嬎?初一數(shù)學知識總結第一章有理數(shù)1.1正數(shù)與負數(shù)①正數(shù):大于0的數(shù)叫正數(shù)。(根據(jù)需要,有時在正數(shù)前面也加上“+”)②負數(shù):在以前學過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)。與正數(shù)具有相反意義。③0既不是正數(shù)也不是負數(shù)。0是正數(shù)和負數(shù)的分界,是的中性數(shù)。注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等1.2有理數(shù)1、有理數(shù)(1)整數(shù):正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);(2)分數(shù);正分數(shù)和負分數(shù)統(tǒng)稱分數(shù);(3)有理數(shù):整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。2、數(shù)軸(1)定義:通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸;(2)數(shù)軸三要素:原點、正方向、單位長度;(3)原點:在直線上任取一個點表示數(shù)0,這個點叫做原點;(4)數(shù)軸上的點和有理數(shù)的關系:所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點,不都是表示有理數(shù)。3、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)4、絕對值:(1)數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作|a|。從幾何意義上講,數(shù)的絕對值是兩點間的距離。(2)一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。1.3有理數(shù)的加減法①有理數(shù)加法法則:1、同號兩數(shù)相加,取相同的符號,并把絕對值相加。2、絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。3、一個數(shù)同0相加,仍得這個數(shù)。加法的交換律和結合律②有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。1.4有理數(shù)的乘除法①有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;任何數(shù)同0相乘,都得0;乘積是1的兩個數(shù)互為倒數(shù)。乘法交換律/結合律/分配律②有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù);兩數(shù)相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數(shù),都得0。1.5有理數(shù)的乘方1、求n個相同因數(shù)的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數(shù),n叫做指數(shù)。負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。2、有理數(shù)的混合運算法則:先乘方,再乘除,最后加減;同級運算,從左到右進行;如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。3、把一個大于10的數(shù)表示成a×10的n次方的形式,使用的就是科學計數(shù)法,注意a的范圍為1≤a<10。4、從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字。四舍五入遵從精確到哪一位就從這一位的下一位開始,而不是從數(shù)字的末尾往前四舍五入。比如:3.5449精確到0.01就是3.54而不是3.55.第二章整式的加減2.1整式1、單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù).單項式指的是數(shù)或字母的積的代數(shù)式.單獨一個數(shù)或一個字母也是單項式.因此,判斷代數(shù)式是否是單項式,關鍵要看代數(shù)式中數(shù)與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式.2、單項式的系數(shù):是指單項式中的數(shù)字因數(shù);3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和.4、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關鍵要看代數(shù)式中的每一項是否是單項式.每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)項的次數(shù),這里ab是次數(shù)項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括它前面的性質(zhì)符號.5、它們都是用字母表示數(shù)或列式表示數(shù)量關系。注意單項式和多項式的每一項都包括它前面的符號。6、單項式和多項式統(tǒng)稱為整式。332.2整式的加減1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關。2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可.同類項與系數(shù)大小、字母的排列順序無關3、合并同類項:把多項式中的同類項合并成一項。可以運用交換律,結合律和分配律。4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。6、整式加減的一般步驟:一去、二找、三合(1)如果遇到括號按去括號法則先去括號.(2)結合同類項.(3)合并同類項第三章一元一次方程3.1一元一次方程1、方程是含有未知數(shù)的等式。2、方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。注意:判斷一個方程是否是一元一次方程要抓住三點:1)未知數(shù)所在的式子是整式(方程是整式方程);2)化簡后方程中只含有一個未知數(shù);3)經(jīng)整理后方程中未知數(shù)的次數(shù)是1.3、解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。4、等式的性質(zhì):1)等式兩邊同時加(或減)同一個數(shù)(或式子),結果仍相等;2)等式兩邊同時乘同一個數(shù),或除以同一個不為0的數(shù),結果仍相等。注意:運用性質(zhì)時,一定要注意等號兩邊都要同時變;運用性質(zhì)2時,一定要注意0這個數(shù).3.2、3.3解一元一次方程在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復使用.因此在解方程時還要注意以下幾點:①去分母:在方程兩邊都乘以各分母的最小公倍數(shù),不要漏乘不含分母的項;分子是一個整體,去分母后應加上括號;去分母與分母化整是兩個概念,不能混淆;②去括號:遵從先去小括號,再去中括號,最后去大括號;不要漏乘括號的項;不要弄錯符號;③移項:把含有未知數(shù)的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號)移項要變號;④合并同類項:不要丟項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;⑤系數(shù)化為1::字母及其指數(shù)不變系數(shù)化成1,在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解。不要分子、分母搞顛倒。3.4實際問題與一元一次方程一.概念梳理⑴列一元一次方程解決實際問題的一般步驟是:①審題,特別注意關鍵的字和詞的意義,弄清相關數(shù)量關系;②設出未知數(shù)(注意單位);③根據(jù)相等關系列出方程;④解這個方程;⑤檢驗并寫出答案(包括單位名稱)。⑵一些固定模型中的等量關系及典型例題參照一元一次方程應用題專練學案。二、思想(本單元常用到的數(shù)學思想方法小結)⑴建模思想:通過對實際問題中的數(shù)量關系的分析,抽象成數(shù)學模型,建立一元一次方程的思想.⑵方程思想:用方程解決實際問題的思想就是方程思想.⑶化歸思想:解一元一次方程的過程,實質(zhì)上就是利用去分母、去括號、移項、合并同類項、未知數(shù)的系數(shù)化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最后逐步把方程轉(zhuǎn)化為x=a的形式.體現(xiàn)了化“未知”為“已知”的化歸思想.⑷數(shù)形結合思想:在列方程解決問題時,借助于線段示意圖和圖表等來分析數(shù)量關系,使問題中的數(shù)量關系很直觀地展示出來,體現(xiàn)了數(shù)形結合的優(yōu)越性.⑸分類思想:在解含字母系數(shù)的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方案設計的實際問題的過程中往往也要注意分類思想在過程中的運用.三、數(shù)學思想方法的學習1.解一元一次方程時,要明確每一步過程都作什么變形,應該注意什么問題.2.尋找實際問題的數(shù)量關系時,要善于借助直觀分析法,如表格法,直線分析法和圖示分析法等.3.列方程(\)解應用題的檢驗包括兩個方面:⑴檢驗求得的結果是不是方程的解;⑵是要判斷方程的解是否符合題目中的實際意義.四、一元一次方程典型例題m3例1.已知方程2x-+3x=5是一元一次方程,則.解:由一元一次方程的定義可知m-3=1,解得m=4.或m-3=0,解得m=3所以m=4或m=3警示:很多同學做到這種題型時就想到指數(shù)是1,從而寫成m=1,這里一定要注意x的指數(shù)是(m-3).2例2.已知x??2是方程ax-(2a-3)x+5=0的解,求a的值.解:∵x=-2是方程ax-(2a-3)x+5=0的解∴將x=-2代入方程,2得a?(-2)-(2a-3)?(-2)+5=02化簡,得4a+4a-6+5=0∴a=18點撥:要想解決這道題目,應該從方程的解的定義入手,方程的解就是使方程左右兩邊值相等的未知數(shù)的值,這樣把x=-2代入方程,然后再解關于a的一元一次方程就可以了.例3.解方程2(x+1)-3(4x-3)=9(1-x).解:去括號,得2x+2-12x+9=9-9x,移項,得2+9-9=12x-2x-9x.合并同類項,得2=x,即x=2.點撥:此題的一般解法是去括號后將所有的未知項移到方程的左邊,已知項移到方程的右邊,其實,我們在去括號后發(fā)現(xiàn)所有的未知項移到方程的左邊合并同類項后系數(shù)不為正,為了減少計算的難度,我們可以根據(jù)等式的對稱性,把所有的未知項移到右邊去,已知項移到方程的左邊,最后再寫成x=a的形式.例4.解方程解析:方程兩邊乘以8,再移項合并同類項,得同樣,方程兩邊乘以6,再移項合并同類項,得方程兩邊乘以4,再移項合并同類項,得x?1?12方程兩邊乘以2,再移項合并同類項,得x=3.說明:解方程時,遇到多重括號,一般的方法是從里往外或從外往里運用乘法的分配律逐層去特號,而本題最簡捷的方法卻不是這樣,是通過方程兩邊分別乘以一個數(shù),達到去分母和去括號的目的。例5.解方程解析:方程可以化為去括號移項合并同類項,得-7x=11,所以x=?11.7說明:一見到此方程,許多同學立即想到老師介紹的方法,那就是把分母化成整數(shù),即各分數(shù)分子分母都乘以10,再設法去分母,其實,仔細觀察這個方程,我們可以將分母化成整數(shù)與去分母兩步一步到位,第一個分數(shù)分子分母都乘以2,第二個分數(shù)分子分母都乘以5,第三個分數(shù)分子分母都乘以10.例6.解方程就能很快得到答案:x=3.3,12=3×4,知識鏈接:此題如果直接去分母,或者通分,數(shù)字較大,運算煩瑣,發(fā)現(xiàn)分母6=2×20=4×5,30=5×6,聯(lián)系到我們小學曾做過這樣的分式化簡題,故采用拆項法解之比較簡便.例7.參加某公司的醫(yī)療保險,住院治療的病人可享受分段報銷,?保險公司制度的報銷細則如下表,某人今年住院治療后得到保險公司報銷的金額是1260元,那么此人的實際醫(yī)療費是()A.2600元解析:設此人的實際醫(yī)療費為x元,根據(jù)題意列方程,得500×0+500×60%+(x-500-500)×80%=1260.解之,得x=2200,即此人的實際醫(yī)療費是2200元.故選B.點撥:解答本題首先要弄清題意,讀懂圖表,從中應理解醫(yī)療費是分段計算累加求和而得的.因60%<1260<2000×80%,所以可知判斷此人的醫(yī)療費用應按第一檔至第三檔累加計算.為500×例8.我市某縣城為鼓勵居民節(jié)約用水,對自來水用戶按分段計費方式收取水費:若每月用水不超過7立方米,則按每立方米1元收費;若每月用水超過7立方米,則超過部分按每立方米2元收費.如果某戶居民今年5月繳納了17元水費,那么這戶居民今年5月的用水量為立方米.7<17,所以該戶居民今年5月的用水量超標.解析:由于1×1+2(x-7)=17,解得x=12.設這戶居民5月的用水量為x立方米,可得方程:7×所以,這戶居民5月的用水量為12立方米.初一數(shù)學知識點歸納正數(shù)和負數(shù)⒈正數(shù)和負數(shù)的概念負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)注意:①字母a可以表示任意數(shù),當a表示正數(shù)時,-a是負數(shù);當a表示負數(shù)時,-a是正數(shù);當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。2.具有相反意義的量若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如:零上8℃表示為:+8℃;零下8℃表示為:-8℃3.0表示的意義⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;⑵0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。如:(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。有理數(shù)1.有理數(shù)的概念⑴正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))⑵正分數(shù)和負分數(shù)統(tǒng)稱為分數(shù)⑶正整數(shù),0,負整數(shù),正分數(shù),負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。理解:只有能化成分數(shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分數(shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分數(shù),都是有理數(shù)。3,整數(shù)也能化成分數(shù),也是有理數(shù)注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像-2,-4,-6,-8?也是偶數(shù),-1,-3,-5?也是奇數(shù)。2.有理數(shù)的分類⑴按有理數(shù)的意義分類⑵按正、負來分正整數(shù)整數(shù)0正有理數(shù)正分數(shù)有理數(shù)有理數(shù)0(0不能忽視)負整數(shù)分數(shù)負有理數(shù)負分數(shù)總結:①正整數(shù)、0統(tǒng)稱為非負整數(shù)(也叫自然數(shù))②負整數(shù)、0統(tǒng)稱為非正整數(shù)③正有理數(shù)、0統(tǒng)稱為非負有理數(shù)④負有理數(shù)、0統(tǒng)稱為非正有理數(shù)數(shù)軸⒈數(shù)軸的概念規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。2.數(shù)軸上的點與有理數(shù)的關系⑴所有的有理數(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,0用原點表示。⑵所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應關系。(如,數(shù)軸上的點π不是有理數(shù))3.利用數(shù)軸表示兩數(shù)大小⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;⑵正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于負數(shù);⑶兩個負數(shù)比較,距離原點遠的數(shù)比距離原點近的數(shù)小。4.數(shù)軸上特殊的(小)數(shù)⑴最小的自然數(shù)是0,無的自然數(shù);⑵最小的正整數(shù)是1,無的正整數(shù);⑶的負整數(shù)是-1,無最小的負整數(shù)5.a可以表示什么數(shù)⑴a>0表示a是正數(shù);反之,a是正數(shù),則a>0;⑵a<0表示a是負數(shù);反之,a是負數(shù),則a<0⑶a=0表示a是0;反之,a是0,,則a=0相反數(shù)⒈相反數(shù)只有符號不同的兩個數(shù)叫做互為相反數(shù),其中一個是另一個的相反數(shù),0的相反數(shù)是0。注意:⑴相反數(shù)是成對出現(xiàn)的;⑵相反數(shù)只有符號不同,若一個為正,則另一個為負;⑶0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。2.相反數(shù)的性質(zhì)與判定⑴任何數(shù)都有相反數(shù),且只有一個;⑵0的相反數(shù)是0;⑶互為相反數(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=03.相反數(shù)的幾何意義在數(shù)軸上與原點距離相等的兩點表示的兩個數(shù),是互為相反數(shù);互為相反數(shù)的兩個數(shù),在數(shù)軸上的對應點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數(shù)對應原點;原點表示0的相反數(shù)。說明:在數(shù)軸上,表示互為相反數(shù)的兩個點關于原點對稱。4.相反數(shù)的求法⑴求一個數(shù)的相反數(shù),只要在它的前面添上負號“-”即可求得(如:5的相反數(shù)是-5);⑵求多個數(shù)的和或差的相反數(shù)時,要用括號括起來再添“-”,然后化簡(如;5a+b的相反數(shù)是-(5a+b)?;喌?5a-b);⑶求前面帶“-”的單個數(shù),也應先用括號括起來再添“-”,然后化簡(如:-5的相反數(shù)是-(-5),化簡得5)5.相反數(shù)的表示方法⑴一般地,數(shù)a的相反數(shù)是-a,其中a是任意有理數(shù),可以是正數(shù)、負數(shù)或0。當a>0時,-a<0(正數(shù)的相反數(shù)是負數(shù))當a<0時,-a>0(負數(shù)的相反數(shù)是正數(shù))當a=0時,-a=0,(0的相反數(shù)是0)絕對值⒈絕對值的幾何定義一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做a的絕對值,記作|a|。2.絕對值的代數(shù)定義⑴一個正數(shù)的絕對值是它本身;⑵一個負數(shù)的絕對值是它的相反數(shù);⑶0的絕對值是0.可用字母表示為:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0??蓺w納為①:a≥0,<═>|a|=a(非負數(shù)的絕對值等于本身;絕對值等于本身的數(shù)是非負數(shù)。)②a≤0,<═>|a|=-a(非正數(shù)的絕對值等于其相反數(shù);絕對值等于其相反數(shù)的數(shù)是非正數(shù)。)經(jīng)典考題如數(shù)軸所示,化簡下列各數(shù)|a|,|b|,|c|,|a-b|,|a-c|,|b+c|解:由題知道,因為a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c3.絕對值的性質(zhì)任何一個有理數(shù)的絕對值都是非負數(shù),也就是說絕對值具有非負性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數(shù)是0.即:a=0<═>|a|=0;⑵一個數(shù)的絕對值是非負數(shù),絕對值最小的數(shù)是0.即:|a|≥0;⑶任何數(shù)的絕對值都不小于原數(shù)。即:|a|≥a;⑷絕對值是相同正數(shù)的數(shù)有兩個,它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;⑸互為相反數(shù)的兩數(shù)的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;⑹絕對值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;⑺若幾個數(shù)的絕對值的和等于0,則這幾個數(shù)就同時為0。即|a|+|b|=0,則a=0且b=0。(非負數(shù)的常用性質(zhì):若幾個非負數(shù)的和為0,則有且只有這幾個非負數(shù)同時為0)經(jīng)典考題已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值解:因為|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0所以|a+3|=0,|2b-2|=0,|c-1|=0即a=-3,b=1,c=1所以a+b+c=-3+1+1=-14.有理數(shù)大小的比較⑴利用數(shù)軸比較兩個數(shù)的大小:數(shù)軸上的兩個數(shù)相比較,左邊的總比右邊的小;⑵利用絕對值比較兩個負數(shù)的大?。簝蓚€負數(shù)比較大小,絕對值大的反而小;異號兩數(shù)比較大小,正數(shù)大于負數(shù)。5.絕對值的化簡①當a≥0時,|a|=a;②當a≤0時,|a|=-a6.已知一個數(shù)的絕對值,求這個數(shù)一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離,一般地,絕對值為同一個正數(shù)的有理數(shù)有兩個,它們互為相反數(shù),絕對值為0的數(shù)是0,沒有絕對值為負數(shù)的數(shù)。如:|a|=5,則a=土5有理數(shù)的加減法1.有理數(shù)的加法法則⑴同號兩數(shù)相加,取相同的符號,并把絕對值相加;⑵絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;⑶互為相反數(shù)的兩數(shù)相加,和為零;⑷一個數(shù)與零相加,仍得這個數(shù)。2.有理數(shù)加法的運算律⑴加法交換律:a+b=b+a⑵加法結合律:(a+b)+c=a+(b+c)在運用運算律時,一定要根據(jù)需要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論