版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣西壯族自治區(qū)崇左市龍州縣市級名校2022-2023學年第六十八初三下學期期末聯(lián)考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知A、B兩點的坐標分別為(-2,0)、(0,1),⊙C的圓心坐標為(0,-1),半徑為1.若D是⊙C上的一個動點,射線AD與y軸交于點E,則△ABE面積的最大值是A.3 B. C. D.42.數(shù)據(jù)4,8,4,6,3的眾數(shù)和平均數(shù)分別是()A.5,4 B.8,5 C.6,5 D.4,53.如圖,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,則∠EDC等于()A.10° B.12.5° C.15° D.20°4.若kb<0,則一次函數(shù)的圖象一定經(jīng)過()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限5.點A為數(shù)軸上表示-2的動點,當點A沿數(shù)軸移動4個單位長到B時,點B所表示的實數(shù)是()A.1B.-6C.2或-6D.不同于以上答案6.拋物線的頂點坐標是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)7.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.8.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形9.下列實數(shù)中,在2和3之間的是()A. B. C. D.10.若,則3(x-2)2A.﹣6B.6C.18D.3011.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定12.如圖,將△ABC繞點C順時針旋轉(zhuǎn),使點B落在AB邊上點B′處,此時,點A的對應點A′恰好落在BC邊的延長線上,下列結(jié)論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將一張矩形紙片折疊成如圖所示的圖形,若AB=6cm,則AC=cm.14.如圖,在平面直角坐標系中,拋物線y=﹣x2+4x與x軸交于點A,點M是x軸上方拋物線上一點,過點M作MP⊥x軸于點P,以MP為對角線作矩形MNPQ,連結(jié)NQ,則對角線NQ的最大值為_________.15.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.16.如圖(a),有一張矩形紙片ABCD,其中AD=6cm,以AD為直徑的半圓,正好與對邊BC相切,將矩形紙片ABCD沿DE折疊,使點A落在BC上,如圖(b).則半圓還露在外面的部分(陰影部分)的面積為_______.17.因式分解:a2b-4ab+4b=______.18.計算:(2018﹣π)0=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在方格紙上建立平面直角坐標系,每個小正方形的邊長為1.(1)在圖1中畫出△AOB關(guān)于x軸對稱的△A1OB1,并寫出點A1,B1的坐標;(2)在圖2中畫出將△AOB繞點O順時針旋轉(zhuǎn)90°的△A2OB2,并求出線段OB掃過的面積.20.(6分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關(guān)系,并說明理由;若BD=23,BF=2,求⊙O的半徑.21.(6分)某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學生的主要上學方式(參與問卷調(diào)查的學生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.種類ABCDEF上學方式電動車私家車公共交通自行車步行其他某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖根據(jù)以上信息,回答下列問題:參與本次問卷調(diào)查的學生共有____人,其中選擇B類的人數(shù)有____人.在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數(shù).22.(8分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.例如圖1,圖2,圖1中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.特例探索(1)如圖1,當∠ABE=45°,c=時,a=,b=;如圖2,當∠ABE=10°,c=4時,a=,b=;歸納證明(2)請你觀察(1)中的計算結(jié)果,猜想a2,b2,c2三者之間的關(guān)系,用等式表示出來,請利用圖1證明你發(fā)現(xiàn)的關(guān)系式;拓展應用(1)如圖4,在□ABCD中,點E,F(xiàn),G分別是AD,BC,CD的中點,BE⊥EG,AD=,AB=1.求AF的長.23.(8分)如圖,熱氣球的探測器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.24.(10分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式組:x-3(x-2)≤425.(10分)如圖,現(xiàn)有一塊鋼板余料,它是矩形缺了一角,.王師傅準備從這塊余料中裁出一個矩形(為線段上一動點).設,矩形的面積為.(1)求與之間的函數(shù)關(guān)系式,并注明的取值范圍;(2)為何值時,取最大值?最大值是多少?26.(12分)如圖,在平面直角坐標系中,直線經(jīng)過點和,雙曲線經(jīng)過點B.(1)求直線和雙曲線的函數(shù)表達式;(2)點C從點A出發(fā),沿過點A與y軸平行的直線向下運動,速度為每秒1個單位長度,點C的運動時間為t(0<t<12),連接BC,作BD⊥BC交x軸于點D,連接CD,①當點C在雙曲線上時,求t的值;②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當時,請直接寫出t的值.27.(12分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點D為邊BC上的動點,連接AD以AD為直徑作⊙O交邊AB、AC分別于點E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:解:當射線AD與⊙C相切時,△ABE面積的最大.連接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,連接CD,設EF=x,∴DE2=EF?OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故選B.考點:1.切線的性質(zhì);2.三角形的面積.2、D【解析】
根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù),再根據(jù)平均數(shù)的計算公式求出平均數(shù)即可【詳解】∵4出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是4;這組數(shù)據(jù)的平均數(shù)是:(4+8+4+6+3)÷5=5;故選D.3、C【解析】試題分析:根據(jù)三角形的三線合一可求得∠DAC及∠ADE的度數(shù),根據(jù)∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故選C.考點:本題主要考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理點評:解答本題的關(guān)鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.4、D【解析】
根據(jù)k,b的取值范圍確定圖象在坐標平面內(nèi)的位置關(guān)系,從而求解.【詳解】∵kb<0,∴k、b異號。①當k>0時,b<0,此時一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;②當k<0時,b>0,此時一次函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;綜上所述,當kb<0時,一次函數(shù)y=kx+b的圖象一定經(jīng)過第一、四象限。故選:D【點睛】此題考查一次函數(shù)圖象與系數(shù)的關(guān)系,解題關(guān)鍵在于判斷圖象的位置關(guān)系5、C【解析】解:∵點A為數(shù)軸上的表示-1的動點,①當點A沿數(shù)軸向左移動4個單位長度時,點B所表示的有理數(shù)為-1-4=-6;②當點A沿數(shù)軸向右移動4個單位長度時,點B所表示的有理數(shù)為-1+4=1.故選C.點睛:注意數(shù)的大小變化和平移之間的規(guī)律:左減右加.與點A的距離為4個單位長度的點B有兩個,一個向左,一個向右.6、A【解析】
已知解析式為頂點式,可直接根據(jù)頂點式的坐標特點,求頂點坐標.【詳解】解:y=(x-2)2+3是拋物線的頂點式方程,根據(jù)頂點式的坐標特點可知,頂點坐標為(2,3).故選A.【點睛】此題主要考查了二次函數(shù)的性質(zhì),關(guān)鍵是熟記:頂點式y(tǒng)=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=h.7、A【解析】
根據(jù)軸對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項正確;
B、不是軸對稱圖形,故本選項錯誤;
C、不是軸對稱圖形,故本選項錯誤;
D、不是軸對稱圖形,故本選項錯誤.
故選:A.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、D【解析】【分析】根據(jù)正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對選項逐一進行分析,即可判斷出答案.【詳解】A.對角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對角線相等的平行四邊形是矩形,故D選項錯誤,符合題意,故選D.【點睛】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關(guān)判定定理是解答此類問題的關(guān)鍵.9、C【解析】
分析:先求出每個數(shù)的范圍,逐一分析得出選項.詳解:A、3<π<4,故本選項不符合題意;
B、1<π?2<2,故本選項不符合題意;
C、2<<3,故本選項符合題意;
D、3<<4,故本選項不符合題意;故選C.點睛:本題考查了估算無理數(shù)的大小,能估算出每個數(shù)的范圍是解本題的關(guān)鍵.10、B【解析】試題分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考點:整式的混合運算—化簡求值;整體思想;條件求值.11、C【解析】
首先求出方程的根,再利用半徑長度,由點O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,
(x+2)(x-6)=0,
解得:x1=-2(不合題意舍去),x2=6,
∵點O到直線l距離是方程x2-4x-12=0的一個根,即為6,
∴點O到直線l的距離d=6,r=5,
∴d>r,
∴直線l與圓相離.故選:C【點睛】本題考核知識點:直線與圓的位置關(guān)系.解題關(guān)鍵點:理解直線與圓的位置關(guān)系的判定方法.12、C【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)求解即可.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì),A:∠與∠均為旋轉(zhuǎn)角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結(jié)論,故答案:C.【點睛】本題主要考查三角形旋轉(zhuǎn)后具有的性質(zhì),注意靈活運用各條件二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】試題分析:如圖,∵矩形的對邊平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考點:1軸對稱;2矩形的性質(zhì);3等腰三角形.14、4【解析】∵四邊形MNPQ是矩形,∴NQ=MP,∴當MP最大時,NQ就最大.∵點M是拋物線在軸上方部分圖象上的一點,且MP⊥軸于點P,∴當點M是拋物線的頂點時,MP的值最大.∵,∴拋物線的頂點坐標為(2,4),∴當點M的坐標為(2,4)時,MP最大=4,∴對角線NQ的最大值為4.15、【解析】根據(jù)弧長公式可得:=,故答案為.16、【解析】
解:如圖,作OH⊥DK于H,連接OK,∵以AD為直徑的半圓,正好與對邊BC相切,∴AD=2CD.∴根據(jù)折疊對稱的性質(zhì),A'D=2CD.∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK的面積為.∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.∴△ODK的面積為.∴半圓還露在外面的部分(陰影部分)的面積是:.故答案為:.17、【解析】
先提公因式b,然后再運用完全平方公式進行分解即可.【詳解】a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2,故答案為b(a﹣2)2.【點睛】本題考查了利用提公因式法與公式法分解因式,熟練掌握完全平方公式的結(jié)構(gòu)特征是解本題的關(guān)鍵.18、1.【解析】
根據(jù)零指數(shù)冪:a0=1(a≠0)可得答案.【詳解】原式=1,故答案為:1.【點睛】此題主要考查了零次冪,關(guān)鍵是掌握計算公式.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)A1(﹣1,﹣2),B1(2,﹣1);(2).【解析】
(1)根據(jù)軸對稱性質(zhì)解答點關(guān)于x軸對稱橫坐標不變,縱坐標互為相反數(shù);(2)根據(jù)旋轉(zhuǎn)變換的性質(zhì)、扇形面積公式計算.【詳解】(1)如圖所示:A1(﹣1,﹣2),B1(2,﹣1);(2)將△AOB繞點O順時針旋轉(zhuǎn)90°的△A2OB2如圖所示:線段OB掃過的面積為:【點睛】此題主要考查了圖形的旋轉(zhuǎn)以及位似變換和軸對稱變換等知識,根據(jù)題意得出對應點坐標位置是解題關(guān)鍵.20、(1)相切,理由見解析;(1)1.【解析】
(1)求出OD//AC,得到OD⊥BC,根據(jù)切線的判定得出即可;(1)根據(jù)勾股定理得出方程,求出方程的解即可.【詳解】(1)直線BC與⊙O的位置關(guān)系是相切,理由是:連接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD為半徑,∴直線BC與⊙O的位置關(guān)系是相切;(1)設⊙O的半徑為R,則OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半徑是1.【點睛】此題考查切線的判定,勾股定理,解題關(guān)鍵在于求出OD⊥BC.21、(1)450、63;⑵36°,圖見解析;(3)2460人.【解析】
(1)根據(jù)“騎電動車”上下的人數(shù)除以所占的百分比,即可得到調(diào)查學生數(shù);用調(diào)查學生數(shù)乘以選擇類的人數(shù)所占的百分比,即可求出選擇類的人數(shù).
(2)求出類的百分比,乘以即可求出類對應的扇形圓心角的度數(shù);由總學生數(shù)求出選擇公共交通的人數(shù),補全統(tǒng)計圖即可;
(3)由總?cè)藬?shù)乘以“綠色出行”的百分比,即可得到結(jié)果.【詳解】(1)參與本次問卷調(diào)查的學生共有:(人);選擇類的人數(shù)有:故答案為450、63;(2)類所占的百分比為:類對應的扇形圓心角的度數(shù)為:選擇類的人數(shù)為:(人).補全條形統(tǒng)計圖為:(3)估計該校每天“綠色出行”的學生人數(shù)為3000×(1-14%-4%)=2460人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、(1)2,2;2,2;(2)+=5;(1)AF=2.【解析】試題分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中線,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如圖2,連接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案為2,2,2,2;(2)猜想:a2+b2=5c2,如圖1,連接EF,設∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(1)如圖2,連接AC,EF交于H,AC與BE交于點Q,設BE與AF的交點為P,∵點E、G分別是AD,CD的中點,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F(xiàn)分別是AD,BC的中點,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四邊形ABFE是平行四邊形,∴EF=AB=1,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分別是△AFE的中線,由(2)的結(jié)論得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考點:相似形綜合題.23、這棟高樓的高度是【解析】
過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】過點A作AD⊥BC于點D,依題意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:這棟高樓的高度是.【點睛】本題主要考查了解直角三角形的應用-仰角俯角問題,難度適中.對于一般三角形的計算,常用的方法是利用作高線轉(zhuǎn)化為直角三角形的計算.24、(1)x1=2+7【解析】試題分析:利用配方法進行解方程;首先分別求出兩個不等式的解,然后得出不等式組的解.試題解析:(1)x2-1x=3x2-1x+1=7(x-2)解得:x1=2+(2)解不等式1,得x≥1解不等式2,得x<1∴不等式組的解集是1≤x<1考點:一元二次方程的解法;不等式組.25、(1);(1)時,取最大值,為.【解析】
(1)分別延長DE,F(xiàn)P,與BC的延長線相交于G,H,由AF=x知CH=x-4,根據(jù),即可得z=,利用矩形的面積公式即可得出解析式;
(1)將(1)中所得解析式配方成頂點式,利用二次函數(shù)的性質(zhì)解答可得.【詳解】解:(1)分別延長DE,F(xiàn)P,與BC的延長線相交于G,H,
∵AF=x,
∴CH=x-4,
設AQ=z,PH=BQ=6-z,
∵PH∥EG,
∴,即,
化簡得z=,
∴y=?x=-x1+x(4≤x≤10);
(1)y=-x1+x=-(x-)1+,
當x=dm時,y取最大值,最大值是dm1.【點睛】本題考查了二次函數(shù)的應用,解題的關(guān)鍵是根據(jù)相似三角形的性質(zhì)得出矩形另一邊AQ的長及二次函數(shù)的性質(zhì).26、(1)直線的表達式為,雙曲線的表達式為;(2)①;②當時,的大小不發(fā)生變化,的值為;③t的值為或.【解析】
(1)由點利用待定系數(shù)法可求出直線的表達式;再由直線的表達式求出點B的坐標,然后利用待定系數(shù)法即可求出雙曲線的表達式;(2)①先求出點C的橫坐標,再將其代入雙曲線的表達式求出點C的縱坐標,從而即可得出t的值;②如圖1(見解析),設直線AB交y軸于M,則,取CD的中點K,連接AK、BK.利用直角三角形的性質(zhì)證明A、D、B、C四點共圓,再根據(jù)圓周角定理可得,從而得出,即可解決問題;③如圖2(見解析),過點B作于M,先求出點D與點M重合的臨界位置時t的值,據(jù)此分和兩種情況討論:根據(jù)三點坐標求出的長,再利用三角形相似的判定定理與性質(zhì)求出DM的長,最后在中,利用勾股定理即可得出答案.【詳解】(1)∵直線經(jīng)過點和∴將點代入得解得故直線的表達式為將點代入直線的表達式得解得∵雙曲線經(jīng)過點,解得故雙曲線的表達式為;(2)①軸,點A的坐標為∴點C的橫坐標為12將其代入雙曲線的表達式得∴C的縱坐標為,即由題意得,解得故當點C在雙曲線上時,t的值為;②當時,的大小不發(fā)生變化,求解過程如下:若點D與點A重合由題意知,點C坐標為由兩點距離公式得:由勾股定理得,即解得因此,在范圍內(nèi),點D與點A不重合,且在點A左側(cè)如圖1,設直線AB交y軸于M,取CD的中點K,連接AK、BK由(1)知,直線AB的表達式為令得,則,即點K為CD的中點,(直角三角形中,斜邊上的中線等于斜邊的一半)同理可得:A、D、B、C四點共圓,點K為圓心(圓周角定理);③過點B作于M由題意和②可知,點D在點A左側(cè),與點M重合是一個臨界位置此時,四邊形ACBD是矩形,則,即因此,分以下2種情況討論:如圖2,當時,過點C作于N又,即由勾股定理得即解得或(不符題設,舍去)當時,同理可得:解得或(不符題設,舍去)綜上所述,t的值為或.【點睛】本題考查反比例函數(shù)綜合題、銳角三角函數(shù)、相似三角形的判定和性質(zhì)、四點共
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 定量秤相關(guān)行業(yè)投資方案
- 出版物發(fā)行零售行業(yè)相關(guān)投資計劃提議
- 概率復習教學課件公開
- GPS高空探測系統(tǒng)相關(guān)項目投資計劃書
- 幼兒園學期規(guī)劃潤物無聲造福未來計劃
- 《酒店禮節(jié)禮貌規(guī)范》課件
- 實習實訓基地建設方案計劃
- DSA腦血管造影術(shù)后皮膚醫(yī)用粘膠相關(guān)損傷的護理
- 《砂石工業(yè)大氣污染防治技術(shù)指南》(編制說明編寫要求)
- 《設備的設計變量》課件
- 2024-2025學年人教版數(shù)學五年級上冊期末檢測試卷(含答案)
- 【MOOC】犯罪心理學-中南財經(jīng)政法大學 中國大學慕課MOOC答案
- 【MOOC】商業(yè)銀行管理學-湖南大學 中國大學慕課MOOC答案
- 2024年山西建設投資集團有限公司校園招聘考試筆試試題及答案解析
- 護理脊柱外科出科
- 2024年陜西省初中學業(yè)水平考試·數(shù)學
- 快遞員合同協(xié)議書格式
- 企業(yè)三年規(guī)劃方案
- 2024屆高考英語詞匯3500左右
- 中華人民共和國統(tǒng)計法
- 工程設計-《工程勘察設計收費標準》(2002年修訂本)-完整版
評論
0/150
提交評論