版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.計算﹣1﹣(﹣4)的結果為()A.﹣3 B.3 C.﹣5 D.52.下列說法正確的是()A.“買一張電影票,座位號為偶數(shù)”是必然事件B.若甲、乙兩組數(shù)據的方差分別為S甲2=0.3,S乙2=0.1,則甲組數(shù)據比乙組數(shù)據穩(wěn)定C.一組數(shù)據2,4,5,5,3,6的眾數(shù)是5D.一組數(shù)據2,4,5,5,3,6的平均數(shù)是53.如圖,由5個完全相同的小正方體組合成一個立體圖形,它的左視圖是()A. B. C. D.4.下列各數(shù)3.1415926,,,,,中,無理數(shù)有()A.2個 B.3個 C.4個 D.5個5.已知二次函數(shù)的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<06.某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結果的實驗最有可能的是()A.袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)C.先后兩次擲一枚質地均勻的硬幣,兩次都出現(xiàn)反面D.先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過97.下面的幾何體中,主視圖為圓的是()A. B. C. D.8.我國古代數(shù)學著作《孫子算經》中有“多人共車”問題:今有三人共車,二車空;二人共車,九人步.問人與車各幾何?其大意是:每車坐3人,兩車空出來;每車坐2人,多出9人無車坐.問人數(shù)和車數(shù)各多少?設車輛,根據題意,可列出的方程是().A. B.C. D.9.已知x1,x2是關于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣310.如果t>0,那么a+t與a的大小關系是()A.a+t>aB.a+t<aC.a+t≥aD.不能確定二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊三角形,使點C落在AB邊的點E處,折痕為BD.則△AED的周長為____cm.12.如圖,將邊長為1的正方形的四條邊分別向外延長一倍,得到第二個正方形,將第二個正方形的四條邊分別向外延長一倍得到第三個正方形,…,則第2018個正方形的面積為_____.13.已知A(0,3),B(2,3)是拋物線上兩點,該拋物線的頂點坐標是_________.14.如圖,中,,,,將繞點逆時針旋轉至,使得點恰好落在上,與交于點,則的面積為_________.15.我國經典數(shù)學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據題意列方程為.16.如圖,AB是⊙O的直徑,AB=2,點C在⊙O上,∠CAB=30°,D為的中點,P是直徑AB上一動點,則PC+PD的最小值為________.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,△AOB的三個頂點坐標分別為A(1,0),O(0,0),B(2,2).以點O為旋轉中心,將△AOB逆時針旋轉90°,得到△A1OB1.畫出△A1OB1;直接寫出點A1和點B1的坐標;求線段OB1的長度.18.(8分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;(2)知識探究:①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數(shù)量關系(不需要寫出證明過程);②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數(shù)量關系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度.19.(8分)在一個不透明的盒子中,裝有3個分別寫有數(shù)字1,2,3的小球,他們的形狀、大小、質地完全相同,攪拌均勻后,先從盒子里隨機抽取1個小球,記下小球上的數(shù)字后放回盒子,攪拌均勻后再隨機取出1個小球,再記下小球上的數(shù)字.(1)用列表法或樹狀圖法寫出所有可能出現(xiàn)的結果;(2)求兩次取出的小球上的數(shù)字之和為奇數(shù)的概率P.20.(8分)P是⊙O內一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點P恰為弦AB的中點,則點P關于⊙O的“冪值”為_____;②判斷當弦AB的位置改變時,點P關于⊙O的“冪值”是否為定值,若是定值,證明你的結論;若不是定值,求點P關于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.21.(8分)如圖,在平面直角坐標系xOy中,將拋物線y=x2平移,使平移后的拋物線經過點A(–3,0)、B(1,0).(1)求平移后的拋物線的表達式.(2)設平移后的拋物線交y軸于點C,在平移后的拋物線的對稱軸上有一動點P,當BP與CP之和最小時,P點坐標是多少?(3)若y=x2與平移后的拋物線對稱軸交于D點,那么,在平移后的拋物線的對稱軸上,是否存在一點M,使得以M、O、D為頂點的三角形△BOD相似?若存在,求點M坐標;若不存在,說明理由.22.(10分)如圖,海中有一個小島A,該島四周11海里范圍內有暗礁.有一貨輪在海面上由西向正東方向航行,到達B處時它在小島南偏西60°的方向上,再往正東方向行駛10海里后恰好到達小島南偏西45°方向上的點C處.問:如果貨輪繼續(xù)向正東方向航行,是否會有觸礁的危險?(參考數(shù)據:≈1.41,≈1.73)23.(12分)某校計劃購買籃球、排球共20個.購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同.籃球和排球的單價各是多少元?若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案.24.已知A、B、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從A、B兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時間t(小時)的函數(shù)關系如圖所示.(1)圖中的線段l1是(填“甲”或“乙”)的函數(shù)圖象,C地在B地的正北方向千米處;(2)誰先到達C地?并求出甲乙兩人到達C地的時間差;(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時到達C地,求他提速后的速度.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
原式利用減法法則變形,計算即可求出值.【詳解】,故選:B.【點睛】本題主要考查了有理數(shù)的加減,熟練掌握有理數(shù)加減的運算法則是解決本題的關鍵.2、C【解析】
根據確定性事件、方差、眾數(shù)以及平均數(shù)的定義進行解答即可.【詳解】解:A、“買一張電影票,座位號為偶數(shù)”是隨機事件,此選項錯誤;B、若甲、乙兩組數(shù)據的方差分別為S甲2=0.3,S乙2=0.1,則乙組數(shù)據比甲組數(shù)據穩(wěn)定,此選項錯誤;C、一組數(shù)據2,4,5,5,3,6的眾數(shù)是5,此選項正確;D、一組數(shù)據2,4,5,5,3,6的平均數(shù)是,此選項錯誤;故選:C.【點睛】本題考查了必然事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、B【解析】試題分析:從左面看易得第一層有2個正方形,第二層最左邊有一個正方形.故選B.考點:簡單組合體的三視圖.4、B【解析】
根據無理數(shù)的定義即可判定求解.【詳解】在3.1415926,,,,,中,,3.1415926,是有理數(shù),,,是無理數(shù),共有3個,故選:B.【點睛】本題主要考查了無理數(shù)的定義,其中初中范圍內學習的無理數(shù)有:等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).5、B【解析】
根據拋物線的開口方向確定a,根據拋物線與y軸的交點確定c,根據對稱軸確定b,根據拋物線與x軸的交點確定b2-4ac,根據x=1時,y>0,確定a+b+c的符號.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個交點,∴b2-4ac>0,C錯誤;當x=1時,y>0,∴a+b+c>0,D錯誤;故選B.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.6、D【解析】
根據統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)的概率為,不符合題意;C、先后兩次擲一枚質地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;D、先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、C【解析】試題解析:A、的主視圖是矩形,故A不符合題意;B、的主視圖是正方形,故B不符合題意;C、的主視圖是圓,故C符合題意;D、的主視圖是三角形,故D不符合題意;故選C.考點:簡單幾何體的三視圖.8、B【解析】
根據題意,表示出兩種方式的總人數(shù),然后根據人數(shù)不變列方程即可.【詳解】根據題意可得:每車坐3人,兩車空出來,可得人數(shù)為3(x-2)人;每車坐2人,多出9人無車坐,可得人數(shù)為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【點睛】此題主要考查了一元一次方程的應用,關鍵是找到問題中的等量關系:總人數(shù)不變,列出相應的方程即可.9、A【解析】
根據一元二次方程根與系數(shù)的關系和整體代入思想即可得解.【詳解】∵x1,x2是關于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點睛】本題主要考查一元二次方程的根與系數(shù)的關系(韋達定理),韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,那么x1+x2=-ba,x1x2=10、A【解析】試題分析:根據不等式的基本性質即可得到結果.t>0,∴a+t>a,故選A.考點:本題考查的是不等式的基本性質點評:解答本題的關鍵是熟練掌握不等式的基本性質1:不等式兩邊同時加或減去同一個整式,不等號方向不變.二、填空題(本大題共6個小題,每小題3分,共18分)11、7【解析】
根據翻折變換的性質可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【詳解】∵折疊這個三角形點C落在AB邊上的點E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.【點睛】本題考查了翻折變換的性質,翻折前后對應邊相等,對應角相等.12、1【解析】
先分別求出第1個、第2個、第3個正方形的面積,由此總結規(guī)律,得到第n個正方形的面積,將n=2018代入即可求出第2018個正方形的面積.【詳解】:∵第1個正方形的面積為:1+4×12×2×1=5=51;
第2個正方形的面積為:5+4×12×25×5=25=52;
第3個正方形的面積為:25+4×12×225×25=125=53【點睛】本題考查了規(guī)律型:圖形的變化類,解題的關鍵是得到第n個正方形的面積.13、(1,4).【解析】試題分析:把A(0,3),B(2,3)代入拋物線可得b=2,c=3,所以=,即可得該拋物線的頂點坐標是(1,4).考點:拋物線的頂點.14、【解析】
首先證明△CAA′是等邊三角形,再證明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三邊的關系求出CD、A′D即可解決問題.【詳解】在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC繞點C逆時針旋轉至△A′B′C,使得點A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′為等邊三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB-∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴.故答案為:【點睛】本題考查了含30度的直角三角形三邊的關系,等邊三角形的判定和性質以及旋轉的性質,掌握旋轉的性質“對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等”是解題的關鍵.15、(x+1);.【解析】試題分析:設水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應用.16、【解析】
作出D關于AB的對稱點D’,則PC+PD的最小值就是CD’的長度,在△COD'中根據邊角關系即可求解.【詳解】解:如圖:作出D關于AB的對稱點D’,連接OC,OD',CD'.又∵點C在⊙O上,∠CAB=30°,D為弧BC的中點,即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,勾股定理,垂徑定理,正確作出輔助線是解題的關鍵.三、解答題(共8題,共72分)17、(1)作圖見解析;(2)A1(0,1),點B1(﹣2,2).(3)【解析】
(1)按要求作圖.(2)由(1)得出坐標.(3)由圖觀察得到,再根據勾股定理得到長度.【詳解】解:(1)畫出△A1OB1,如圖.(2)點A1(0,1),點B1(﹣2,2).(3)OB1=OB==2.【點睛】本題主要考查的是繪圖、識圖、勾股定理等知識點,熟練掌握方法是本題的解題關鍵.18、(1)證明見解析(2)①線段EC,CF與BC的數(shù)量關系為:CE+CF=BC.②CE+CF=BC(3)【解析】
(1)利用包含60°角的菱形,證明△BAE≌△CAF,可求證;(2)由特殊到一般,證明△CAE′∽△CGE,從而可以得到EC、CF與BC的數(shù)量關系(3)連接BD與AC交于點H,利用三角函數(shù)BH,AH,CH的長度,最后求BC長度.【詳解】解:(1)證明:∵四邊形ABCD是菱形,∠BAD=120°,∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,∵∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF,∴EC+CF=EC+BE=BC,即EC+CF=BC;(2)知識探究:①線段EC,CF與BC的數(shù)量關系為:CE+CF=BC.理由:如圖乙,過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.
類比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE,,同理可得:,,即;②CE+CF=BC.理由如下:過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.類比(1)可得:E′C+CF′=BC,∵AE′∥EG,∴△CAE′∽△CAE,∴,∴CE=CE′,同理可得:CF=CF′,∴CE+CF=CE′+CF′=(CE′+CF′)=BC,即CE+CF=BC;(3)連接BD與AC交于點H,如圖所示:在Rt△ABH中,∵AB=8,∠BAC=60°,∴BH=ABsin60°=8×=,AH=CH=ABcos60°=8×=4,∴GH===1,∴CG=4-1=3,∴,∴t=(t>2),由(2)②得:CE+CF=BC,∴CE=BC-CF=×8-=.【點睛】本題屬于相似形綜合題,主要考查了全等三角形的判定和性質、菱形的性質,相似三角形的判定和性質等知識的綜合運用,解題的關鍵是靈活運用這些知識解決問題,學會添加輔助線構造相似三角形.19、(1見解析;(2).【解析】
(1)根據題意先畫出樹狀圖,得出所有可能出現(xiàn)的結果數(shù);
(2)根據(1)可得共有9種情況,兩次取出小球上的數(shù)字和為奇數(shù)的情況,再根據概率公式即可得出答案.【詳解】(1)列表得,(2)兩次取出的小球上的數(shù)字之和為奇數(shù)的共有4種,∴P兩次取出的小球上數(shù)字之和為奇數(shù)的概率P=.【點睛】此題可以采用列表法或者采用樹狀圖法,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.樹狀圖法適用于兩步或兩步以上完成的事件.解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)①20;②當弦AB的位置改變時,點P關于⊙O的“冪值”為定值,證明見解析;(2)點P關于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解析】【詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質得到△PBO為直角三角形,然后依據勾股定理可求得PB的長,然后依據冪值的定義求解即可;②過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據相似三角形的性質得到PA?PB=PA′?PB′從而得出結論;(2)連接OP、過點P作AB⊥OP,交圓O與A、B兩點.由等腰三角形三線合一的性質可知AP=PB,然后在Rt△APO中,依據勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點P的坐標,然后由題意圓的冪值為6,半徑為1可求得d的值,再結合兩點間的距離公式可得到關于b的方程,從而可求得b的極值,據此即可確定出b的取值范圍.【詳解】(1)①如圖1所示:連接OA、OB、OP,∵OA=OB,P為AB的中點,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“冪值”=2×2=20,故答案為:20;②當弦AB的位置改變時,點P關于⊙O的“冪值”為定值,證明如下:如圖,AB為⊙O中過點P的任意一條弦,且不與OP垂直,過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA?PB=PA′?PB′=20,∴當弦AB的位置改變時,點P關于⊙O的“冪值”為定值;(2)如圖3所示;連接OP、過點P作AB⊥OP,交圓O與A、B兩點,∵AO=OB,PO⊥AB,∴AP=PB,∴點P關于⊙O的“冪值”=AP?PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴關于⊙O的“冪值”=r2﹣d2,故答案為:點P關于⊙O的“冪值”為r2﹣d2;(3)如圖1所示:過點C作CP⊥AB,,∵CP⊥AB,AB的解析式為y=x+b,∴直線CP的解析式為y=﹣x+.聯(lián)立AB與CP,得,∴點P的坐標為(﹣﹣b,+b),∵點P關于⊙C的“冪值”為6,∴r2﹣d2=6,∴d2=3,即(﹣﹣b)2+(+b)2=3,整理得:b2+2b﹣9=0,解得b=﹣3或b=,∴b的取值范圍是﹣3≤b≤,故答案為:﹣3≤b≤.【點睛】本題綜合性質較強,考查了新定義題,解答過程中涉及到了冪值的定義、勾股定理、等腰三角形的性質、相似三角形的性質和判定、一次函數(shù)的交點問題、兩點間的距離公式等,依據兩點間的距離公式列出關于b的方程,從而求得b的極值是解題的關鍵.21、(1)y=x2+2x﹣3;(2)點P坐標為(﹣1,﹣2);(3)點M坐標為(﹣1,3)或(﹣1,2).【解析】
(1)設平移后拋物線的表達式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項系數(shù)與原拋物線的二次項系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達式;(2)先根據平移后拋物線解析式求得其對稱軸,從而得出點C關于對稱軸的對稱點C′坐標,連接BC′,與對稱軸交點即為所求點P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點D的坐標,由點O、B、E、D的坐標可求得OB、OE、DE、BD的長,從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當或時,以M、O、D為頂點的三角形與△BOD相似.由比例式可求得MD的長,于是可求得點M的坐標.【詳解】(1)設平移后拋物線的表達式為y=a(x+3)(x﹣1),∵由平移的性質可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項系數(shù)與原拋物線的二次項系數(shù)相同,∴平移后拋物線的二次項系數(shù)為1,即a=1,∴平移后拋物線的表達式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為直線x=﹣1,與y軸的交點C(0,﹣3),則點C關于直線x=﹣1的對稱點C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點即為所求點P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點P坐標為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點M只能在點D上方,∵∠BOD=∠ODM=135°,∴當或時,以M、O、D為頂點的三角形△BOD相似,①若,則,解得DM=2,此時點M坐標為(﹣1,3);②若,則,解得DM=1,此時點M坐標為(﹣1,2);綜上,點M坐標為(﹣1,3)或(﹣1,2).【點睛】本題主要考查的是二次函數(shù)的綜合應用,解答本題主要應用了平移的性質、翻折的性質、二次函數(shù)的圖象和性質、待定系數(shù)法求二次函數(shù)的解析式、等腰直角三角形的性質、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關鍵.22、不會有觸礁的危險,理由見解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可設AH=CH=x,根據可得關于x的方程,解之可得.詳解:過點A作AH⊥BC,垂足為點H.由題意,得∠BAH=60°,∠CAH=45°,BC=1.設AH=x,則CH=x.在Rt△ABH中,∵,解得:.∵13.65>11,∴貨輪繼續(xù)向正東方向航行,不會有觸礁的危險.點睛:本題考查了解直角三角形的應用﹣方向角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年二手手機購買合同(三篇)
- 2025年買賣協(xié)議經典版(2篇)
- 2025年臨時供用水協(xié)議(2篇)
- 2025年個人股份轉讓合同標準版本(三篇)
- 2025年個人房屋出租賃合同樣本(三篇)
- 2025年個人房屋購房合同標準樣本(2篇)
- 服裝店裝修承包協(xié)議
- 服裝店裝修合同范本公裝
- 農村養(yǎng)殖場裝修協(xié)議模板
- 市政項目土石方運輸合同
- 關于餐飲合同范本
- CHT 4019-2016 城市政務電子地圖技術規(guī)范(正式版)
- 廣西壯族自治區(qū)南寧市2024年七年級下學期語文期末試卷附答案
- 微量注射泵安全使用和維護保養(yǎng)
- 建設用地土壤污染風險評估技術導則(HJ 25.3-2019代替HJ 25.3-2014)
- 高二物理人教版(2019)選擇性必修第一冊教學設計
- 部編版歷史八年級上冊 第八單元 教學設計
- JJG 692-2010無創(chuàng)自動測量血壓計
- 徐州市2023-2024學年八年級上學期期末地理試卷(含答案解析)
- 飲料對人體的危害1
- 喉癌氣管套管護理課件
評論
0/150
提交評論