版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2018-2019學年黑龍江省哈爾濱市第三高一下學期期末數學試題一、單選題1.下列結論正確的是()A.空間中不同三點確定一個平面B.空間中兩兩相交的三條直線確定一個平面C.一條直線和一個點能確定一個平面D.梯形一定是平面圖形【答案】D【解析】空間中不共線三點確定一個平面,空間中兩兩相交的三條直線確定一個或三個平面,一條直線和一個直線外一點能確定一個平面,梯形有兩對邊相互平行,所以梯形一定是平面圖形,因此選D.2.若,則下列結論不正確的是()A. B. C. D.【答案】B【解析】由得出,再利用不等式的基本性質和基本不等式來判斷各選項中不等式的正誤.【詳解】,,,,A選項正確;,B選項錯誤;由基本不等式可得,當且僅當時等號成立,,則等號不成立,所以,C選項正確;,,D選項正確.故選:B.【點睛】本題考查不等式正誤的判斷,涉及不等式的基本性質和基本不等式,考查推理能力,屬于基礎題.3.(卷號)2397643038875648(題號)2398229448728576(題文)已知直線、,平面、,給出下列命題:①若,,且,則;②若,,且,則;③若,,且,則;④若,,且,則.其中正確的命題是()A.①② B.③④ C.①④ D.②③【答案】C【解析】逐一判斷各命題的正誤,可得出結論.【詳解】對于命題①,若,,且,則,該命題正確;對于命題②,若,,且,則與平行或相交,該命題錯誤;對于命題③,若,,且,則與平行、垂直或斜交,該命題錯誤;對于命題④,若,,且,則,該命題正確.故選:C.【點睛】本題考查線面、面面位置關系有關命題真假的判斷,在判斷時,可充分利用線面、面面平行或垂直的判定與性質定理,也可以結合幾何體模型進行判斷,考查推理能力,屬于中等題.4.設數列是公差不為零的等差數列,它的前項和為,且、、成等比數列,則等于()A. B. C. D.【答案】A【解析】設等差數列的公差為,根據得出與的等量關系,即可計算出的值.【詳解】設等差數列的公差為,由于、、成等比數列,則有,所以,,化簡得,因此,.故選:A.【點睛】本題考查等差數列前項和中基本量的計算,解題的關鍵就是結合題意得出首項與公差的等量關系,考查計算能力,屬于基礎題.5.已知,,則()A. B. C. D.【答案】C【解析】由放縮法可得出,再利用特殊值法以及不等式的基本性質可判斷各選項中不等式的正誤.【詳解】,,可得.取,,,則A、D選項中的不等式不成立;取,,,則B選項中的不等式不成立;且,由不等式的基本性質得,C選項中的不等式成立.故選:C.【點睛】本題考查不等式正誤的判斷,一般利用不等式的性質或特殊值法進行判斷,考查推理能力,屬于中等題.6.有一塔形幾何體由若干個正方體構成,構成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為2,且該塔形的表面積(含最底層正方體的底面面積)超過39,則該塔形中正方體的個數至少是A.4 B.5 C.6 D.7【答案】C【解析】根據相鄰正方體的關系得出個正方體的棱長為等比數列,求出塔形表面積的通項公式,令,即可得出的范圍.【詳解】設從最底層開始的第層的正方體棱長為,則是以2為首項,以為公比的等比數列.∴是以4為首項,以為公比的等比數列∴塔形的表面積為.令,解得.∴塔形正方體最少為6個.故選C.【點睛】此題考查了立體圖形的表面積問題以及等比數列求和公式的應用.解決本題的關鍵是得到上下正方體的棱長之間的關系,從而即可得出依次排列的正方體的一個面的面積,這里還要注意把最下面的正方體看做是6個面之外,上面的正方體都是露出了4個面.7.在數列中,(,為常數),若平面上的三個不共線的非零向量、、滿足,三點、、共線且該直線不過點,則等于()A. B. C. D.【答案】A【解析】利用等差數列的定義可知數列為等差數列,由向量中三點共線的結論得出,然后利用等差數列的求和公式可計算出的值.【詳解】,,所以,數列為等差數列,三點、、共線且該直線不過點,,,因此,.故選:A.【點睛】本題考查等差數列求和,涉及等差數列的定義以及向量中三點共線結論的應用,考查計算能力,屬于中等題.8.已知三棱柱的側棱與底面邊長都相等,在底面內的射影為的中心,則與底面所成角的正弦值等于()A. B. C. D.【答案】B【解析】由題意不妨令棱長為,如圖在底面內的射影為的中心,故由勾股定理得過作平面,則為與底面所成角,且如圖作于中點與底面所成角的正弦值故答案選點睛:本題考查直線與平面所成的角,要先過點作垂線構造出線面角,然后計算出各邊長度,在直角三角形中解三角形.9.一個幾何體的三視圖如圖所示,則這個幾何體的體積等于()A. B.或 C.或 D.【答案】D【解析】作出幾何體的直觀圖,可知幾何體為正方體切一角所得的組合體,計算出正方體的體積和所切去三棱錐的體積,相減可得答案.【詳解】幾何體的直觀圖如下圖所示:可知幾何體為正方體切一角所得的組合體,因此,該幾何體的體積為.故選:D.【點睛】本題考查的知識點是由三視圖求體積,其中根據三視圖作出幾何體的直觀圖是解答的關鍵,考查空間想象能力與計算能力,屬于中等題.10.已知某數列的前項和(為非零實數),則此數列為()A.等比數列 B.從第二項起成等比數列C.當時為等比數列 D.從第二項起的等比數列或等差數列【答案】D【解析】設數列的前項和為,運用數列的遞推式:當時,,當時,,結合等差數列和等比數列的定義和通項公式,即可得到所求結論.【詳解】設數列的前項和為,對任意的,(為非零實數).當時,;當時,.若,則,此時,該數列是從第二項起的等差數列;若且,不滿足,當時,,此時,該數列是從第二項起的等比數列.綜上所述,此數列為從第二項起的等比數列或等差數列.故選:D.【點睛】本題考查數列的遞推式的運用,等差數列和等比數列的定義和通項公式,考查分類討論思想和運算能力,屬于中檔題.11.設正實數滿足,則當取得最大值時,的最大值為()A.0 B.1 C. D.3【答案】B【解析】【詳解】x,y,z為正實數,且,根據基本不等式得,當且僅當x=2y取等號,所以x=2y時,取得最大值1,此時,,當時,取最大值1,的最大值為1,故選B.12.點、、、在同一個球的球面上,,.若四面體的體積的最大值為,則這個球的表面積為()A. B. C. D.【答案】D【解析】根據幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,可得與面垂直時體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據題意知,、、三點均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,所以,當與面垂直時體積最大,最大值為,,設球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點睛】本題考查的知識點是球內接多面體,球的表面積,其中分析出何時四面體體積取最大值,是解答的關鍵.二、填空題13.已知正方體的棱長為,點、分別為、的中點,則點到平面的距離為______.【答案】【解析】作出圖形,取的中點,連接,證明平面,可知點平面的距離等于點到平面的距離,然后利用等體積法計算出點到平面的距離,即為所求.【詳解】如下圖所示,取的中點,連接,在正方體中,且,、分別為、的中點,且,所以,四邊形為平行四邊形,且,又,,平面,平面,平面,則點平面的距離等于點到平面的距離,的面積為,在正方體中,平面,且平面,,易知三棱錐的體積為.的面積為.設點到平面的距離為,則,.故答案為:.【點睛】本題考查點到平面的距離的求法,是中檔題,解題時要認真審題,注意等體積法的合理運用.14.已知正三棱柱木塊,其中,,一只螞蟻自點出發(fā)經過線段上的一點到達點,當沿螞蟻走過的最短路徑,截開木塊時,兩部分幾何體的體積比為______.【答案】【解析】將正三棱柱的側面沿棱展開成平面,連接與的交點即為滿足最小時的點,可知點為棱的中點,即可計算出沿著螞蟻走過的路徑截開木塊時兩幾何體的體積之比.【詳解】將正三棱柱沿棱展開成平面,連接與的交點即為滿足最小時的點.由于,,再結合棱柱的性質,可得,一只螞蟻自點出發(fā)經過線段上的一點到達點,當沿螞蟻走過的最短路徑,為的中點,因為三棱柱是正三棱柱,所以當沿螞蟻走過的最短路徑,截開木塊時,兩部分幾何體的體積比為:.故答案為:.【點睛】本題考查棱柱側面最短路徑問題,涉及棱柱側面展開圖的應用以及幾何體體積的計算,考查分析問題解決問題能力,是中檔題.15.已知數列滿足則的最小值為__________.【答案】【解析】先利用累加法求出an=33+n2﹣n,所以,設f(n),由此能導出n=5或6時f(n)有最小值.借此能得到的最小值.【詳解】解:∵an+1﹣an=2n,∴當n≥2時,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=n2﹣n+33且對n=1也適合,所以an=n2﹣n+33.從而設f(n),令f′(n),則f(n)在上是單調遞增,在上是遞減的,因為n∈N+,所以當n=5或6時f(n)有最小值.又因為,,所以的最小值為故答案為【點睛】本題考查了利用遞推公式求數列的通項公式,考查了累加法.還考查函數的思想,構造函數利用導數判斷函數單調性.16.有6根細木棒,其中較長的兩根分別為,,其余4根均為,用它們搭成三棱錐,則其中兩條較長的棱所在的直線所成的角的余弦值為.【答案】【解析】分較長的兩條棱所在直線相交,和較長的兩條棱所在直線異面兩種情況討論,結合三棱錐的結構特征,即可求出結果.【詳解】當較長的兩條棱所在直線相交時,如圖所示:不妨設,,,所以較長的兩條棱所在直線所成角為,由勾股定理可得:,所以,所以此時較長的兩條棱所在直線所成角的余弦值為;當較長的兩條棱所在直線異面時,不妨設,,則,取CD的中點為O,連接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能構成三角形。所以此情況不存在。故答案為:.【點睛】本題主要考查異面直線所成的角,熟記異面直線所成角的概念,以及三棱錐的結構特征即可,屬于??碱}型.三、解答題17.在正方體中.(1)求證:;(2)是中點時,求直線與面所成角.【答案】(1)見解析;(2).【解析】(1)連接,證明平面,進而可得出;(2)連接、、,設,過點在平面內作,垂足為點,連接,設,則角和均為直線與平面所成的角,從而可得出,即可求出所求角.【詳解】(1)如下圖所示,連接,在正方體中,平面,平面,,四邊形為正方形,,,平面,平面,;(2)連接、、,設,過點在平面內作,垂足為點,設,設正方體的棱長為,在正方體中,且,所以,四邊形為平行四邊形,,平面,平面,在平面內,,,,,則、、、四點共面,為的中點,,且,平面,平面,,由勾股定理得,連接,設,則直線與面所成角為,則,,由連比定理得,則,因此,直線與面所成角為.【點睛】本題考查線線垂直的證明,考查線面角的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.18.正四棱錐中,,分別為,的中點.(1)求證:平面;(2)若,求異面直線和所成角的余弦值.【答案】(1)見解析(2)【解析】(1)取的中點,連接、,可得四邊形為平行四邊形,得到,由線面平行的判定可得平面;(2)連接交于,則為的中點,結合為的中點,得,可得(或其補角)為異面直線和所成角,在正四棱錐中,由為的中點,且,可得,設,求解三角形可得異面直線和所成角的余弦值.【詳解】(1)取的中點,連接、,是的中點,且,在正四棱錐中,底面為正方形,且,又為的中點,且,且,則四邊形為平行四邊形,,平面,平面,平面;(2)連接交于,則為的中點,又為的中點,,又,(或其補角)為異面直線和所成角,在正四棱錐中,由為的中點,且,,設,則,,,則,因此,異面直線和所成角的余弦值為.【點睛】本題考查直線與平面平行的判定,考查空間想象能力與思維能力,訓練了異面直線所成角的求法,是中檔題.19.如圖所示,是一個矩形花壇,其中米,米.現將矩形花壇擴建成一個更大的矩形花壇,要求:在上,在上,對角線過點,且矩形的面積小于150平方米.(1)設長為米,矩形的面積為平方米,試用解析式將表示成的函數,并確定函數的定義域;(2)當的長度是多少時,矩形的面積最?。坎⑶笞钚∶娣e.【答案】(1),;(2),.【解析】【詳解】(1)由可得,,∴.由,且,解得,∴函數的定義域為.(2)令,則,,當且僅當時,取最小值,故當的長度為米時,矩形花壇的面積最小,最小面積為96平方米.【考點】1.分式不等式;2.均值不等式.20.如圖,等腰梯形中,,,,取中點,連接,把三角形沿折起,使得點在底面上的射影落在上,設為的中點.(1)求證:平面;(2)求二面角的余弦值.【答案】(1)見解析;(2).【解析】(1)取的中點,取的中點,連接、、、、,可知、均為等邊三角形,可證明出平面,從而得出,再證明出四邊形為平行四邊形,可得出,由等腰三角形三線合一的性質可得,從而可得出,再利用線面垂直的判定定理可證明出平面;(2)過點在平面內作,垂足為點,連接,證明出平面,可得知二面角的平面角為,計算出直角三角形三邊邊長,即可求出,即為所求.【詳解】(1)如下圖所示,取的中點,取的中點,連接、、、、,在等腰梯形中,,,,為的中點,所以,,又,則,為等邊三角形,同理可知為等邊三角形,為的中點,,,,平面,平面,,由于和是邊長相等的等邊三角形,且為的中點,,為的中點,.在等腰梯形中,且,則四邊形為平行四邊形,、分別為、的中點,且,為的中點,且,則四邊形為平行四邊形,,,,平面;(2)過點在平面內作,垂足為點,連接,由于點在平面內的射影點在上,則平面平面,由(1)知,,又平面平面,平面,平面,平面,,,,平面,平面,,所以,二面角的平面角為,在中,,,,,,因此,二面角的余弦值為.【點睛】本題主要考查線面垂直的判定以及二面角的求法,解題的關鍵就是找出二面角的平面角,通過解三角形來求解二面角,考查推理能力與計算能力,屬于中等題.21.已知三棱柱中,三個側面均為矩形,底面為等腰直角三角形,,點為棱的中點,點在棱上運動.(1)求證;(2)當點運動到某一位置時,恰好使二面角的平面角的余弦值為,求點到平面的距離;(3)在(2)的條件下,試確定線段上是否存在一點,使得平面?若存在,確定其位置;若不存在,說明理由.【答案】(1)見解析;(2);(3)存在,為中點.【解析】(1)以CB為x軸,CA為y軸,CC1為z軸,C為原點建立坐標系,設E(m,0,2),要證A1C⊥AE,可證,只需證明,利用向量的數量積運算即可證明;(2)分別求出平面EA1D、平面A1DB的一個法向量,由兩法向量夾角余弦值的絕對值等于,解得m值,由此可得答案;(3)在(2)的條件下,設F(x,y,0),可知與平面A1DB的一個法向量平行,由此可求出點F坐標,進而求出||,即得答案.【詳解】(1)以CB為x軸,CA為y軸,CC1為z軸,C為原點建立坐標系,設E(m,0,2),C(0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度股東退股競業(yè)限制協議3篇
- 2025年度蔬菜種植與物流配送中心合作合同3篇
- 2025年度日用品產品召回與售后服務合同范本3篇
- 小學生防溺水安全教育實踐報告
- 家用健身器材選擇與使用指南專為老人設計
- 二零二五年度櫥柜行業(yè)知識產權合同匯編3篇
- 2024版特定全新住宅租賃補充協議條款版B版
- 古詩詞在小學生情感教育中的價值研究
- 2025年度股權投資與技術支持合作協議3篇
- 2024年連鎖餐館加盟經營合同版B版
- 廣西壯族自治區(qū)國資委下屬國有企業(yè)
- 最新VTE指南解讀(靜脈血栓栓塞癥的臨床護理指南解讀)
- 生產計劃控制程序文件
- 山東省濟南市2022年中考英語情景運用拔高練習(Word版含答案)
- 護理查房-糖尿病足 PPT課件
- (高清正版)T-CAGHP 015—2018地質災害治理工程監(jiān)理預算標準(試行)
- Q∕GDW 12083-2021 輸變電設備物聯網無線節(jié)點設備技術規(guī)范
- 公司物流倉儲規(guī)劃方案及建議書
- 智能掃地機器人畢業(yè)設計
- 佳能EOS7D數碼單反相機說明書
- 大型焰火燃放活動方案審批表
評論
0/150
提交評論