安徽省淮南地區(qū)2023年數(shù)學(xué)八下期末聯(lián)考試題含解析_第1頁
安徽省淮南地區(qū)2023年數(shù)學(xué)八下期末聯(lián)考試題含解析_第2頁
安徽省淮南地區(qū)2023年數(shù)學(xué)八下期末聯(lián)考試題含解析_第3頁
安徽省淮南地區(qū)2023年數(shù)學(xué)八下期末聯(lián)考試題含解析_第4頁
安徽省淮南地區(qū)2023年數(shù)學(xué)八下期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年八下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列等式一定成立的是()A.9-4=5 B.52.一次函數(shù)y1=kx+b與y2=x+a的圖象如圖,則下列結(jié)論:①k<1;②a>1;③當(dāng)x<4時,y1<y2;④b<1.其中正確結(jié)論的個數(shù)是()A.4個 B.3個 C.2個 D.1個3.如圖,在菱形ABCD中,∠A=60°,E,F(xiàn)分別是AB,AD的中點,DE,BF相交于點G,連接BD,CG,有下列結(jié)論:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個4.如圖,點P是□ABCD邊上一動點,沿A→D→C→B的路徑移動,設(shè)P點經(jīng)過的路徑長為x,△BAP的面積是y,則下列能大致反映y與x的函數(shù)關(guān)系的圖象是()A. B. C. D.5.下列方程中,是一元二次方程的是()A. B. C. D.6.如圖所示,在中,分別是的中點,分別交于點.下列命題中不正確的是()A. B.C. D.7.如圖,平行四邊形ABCD中,∠A的平分線AE交CD于E,AB=5,BC=3,則EC的長()A.2 B.3 C.4 D.2.58.下列圖形中,是中心對稱圖形的是()A. B.C. D.9.下列定理中沒有逆定理的是()A.等腰三角形的兩底角相等 B.平行四邊形的對角線互相平分C.角平分線上的點到角兩邊的距離相等 D.全等三角形的對應(yīng)角相等10.下列對一次函數(shù)y=﹣2x+1的描述錯誤的是()A.y隨x的增大而減小B.圖象經(jīng)過第二、三、四象限C.圖象與直線y=2x相交D.圖象可由直線y=﹣2x向上平移1個單位得到11.如圖,在矩形ABCD中,邊AB的長為3,點E,F(xiàn)分別在AD,BC上,連接BE,DF,EF,BD.若四邊形BEDF是菱形,且EF=AE+FC,則邊BC的長為()A.2 B.3 C.6 D.12.要使式子3-x有意義,則x的取值范圍是()A.x>0 B.x≥﹣3 C.x≥3 D.x≤3二、填空題(每題4分,共24分)13.如圖是甲、乙兩射擊運動員的10次射擊訓(xùn)練成績的折射線統(tǒng)計圖,則射擊成績較穩(wěn)定的是__________(填“甲”或“乙”)。14.將兩個全等的直角三角形的直角邊對齊拼成平行四邊形,若這兩個直角三角形直角邊的長分別是,那么拼成的平行四邊形較長的對角線長是__________.15.已知,菱形的周長為8,高為1,則菱形兩鄰角的度數(shù)比為_________.16.多項式與多項式的公因式分別是______.17.在平面直角坐標(biāo)系中,點P(﹣,﹣1)到原點的距離為_____.18.“五一”期間,小紅到某景區(qū)登山游玩,小紅上山時間x(分鐘)與走過的路程y(米)之間的函數(shù)關(guān)系如圖所示,在小紅出發(fā)的同時另一名游客小卉正在距離山底60米處沿相同線路上山,若小紅上山過程中與小卉恰好有兩次相遇,則小卉上山平均速度v(米/分鐘)的取值范圍是_____.三、解答題(共78分)19.(8分)已知:y=y(tǒng)1﹣y2,y1與x2成正比例,y2與x成反比例,且x=1時,y=3;x=﹣1時y=1.(1)求y關(guān)于x的函數(shù)關(guān)系式.(2)求x=﹣時,y的值.20.(8分)如圖,一次函數(shù)y1=-x+b的圖象與反比例函數(shù)y2=(x>0)的圖象交于A、B兩點,與x軸交于點C,且點A的坐標(biāo)為(1,2),點B的橫坐標(biāo)為1.(1)在第一象限內(nèi),當(dāng)x取何值時,y1>y2?(根據(jù)圖直接寫出結(jié)果)(2)求反比例函數(shù)的解析式及△AOB的面積.21.(8分)反比例函數(shù)的圖象經(jīng)過點點是直線上一個動點,如圖所示,設(shè)點的橫坐標(biāo)為且滿足過點分別作軸,軸,垂足分別為與雙曲線分別交于兩點,連結(jié).(1)求的值并結(jié)合圖像求出的取值范圍;(2)在點運動過程中,求線段最短時點的坐標(biāo);(3)將三角形沿著翻折,點的對應(yīng)點得到四邊形能否為菱形?若能,求出點坐標(biāo);若不能,說明理由;(4)在點運動過程中使得求出此時的面積.22.(10分)如果一組數(shù)據(jù)1,2,2,4,的平均數(shù)為1.(1)求的值;(2)求這組數(shù)據(jù)的眾數(shù).23.(10分)某學(xué)校計劃在總費用元的限額內(nèi),租用汽車送名學(xué)生和名教師集體參加校外實踐活動,為確保安全,每輛汽車上至少要有名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.(1)根據(jù)題干所提供的信息,確定共需租用多少輛汽車?(2)請你給學(xué)校選擇一種最節(jié)省費用的租車方案.24.(10分)因式分解:(1);(2).25.(12分)如圖,平行四邊形中,點是與的交點,過點的直線與,的延長線分別交于點,.(1)求證:;(2)連接,,求證:四邊形是平行四邊形.26.在矩形中ABCD,AB=12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對位點G,過點B作BE⊥CG,垂足為E且在AD上,BE交PC于點F(1)如圖1,若點E是AD的中點,求證:△AEB≌△DEC;(2)如圖2,①求證:BP=BF;②當(dāng)AD=25,且AE<DE時,求的值.

參考答案一、選擇題(每題4分,共48分)1、B【解析】A.9-4=3-2=1,則原計算錯誤;B.5×3=15,正確;C.92、D【解析】

根據(jù)一次函數(shù)的性質(zhì)對①②④進(jìn)行判斷;當(dāng)x<4時,根據(jù)兩函數(shù)圖象的位置對③進(jìn)行判斷.【詳解】解:根據(jù)圖象y1=kx+b經(jīng)過第一、二、四象限,∴k<1,b>1,故①正確,④錯誤;∵y2=x+a與y軸負(fù)半軸相交,∴a<1,故②錯誤;當(dāng)x<4時圖象y1在y2的上方,所以y1>y2,故③錯誤.所以正確的有①共1個.故選D.【點睛】此題主要考查了一次函數(shù),以及一次函數(shù)與不等式,根據(jù)函數(shù)圖象的走勢和與y軸的交點來判斷各個函數(shù)k,b的值.3、C【解析】試題解析:①由菱形的性質(zhì)可得△ABD、BDC是等邊三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正確;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所對直角邊等于斜邊一半)、BG=CG,故可得出BG+DG=CG,即②也正確;③首先可得對應(yīng)邊BG≠FD,因為BG=DG,DG>FD,故可得△BDF不全等△CGB,即③錯誤;④S△ABD=AB?DE=AB?BE=AB?AB=AB2,即④正確.綜上可得①②④正確,共3個.故選C.4、A【解析】點P沿A→D運動,△BAP的面積逐漸變大;點P沿D→C移動,△BAP的面積不變;點P沿C→B的路徑移動,△BAP的面積逐漸減?。蔬xA.5、C【解析】

根據(jù)一元二次方程的定義即可求解.【詳解】A.是一元一次方程,故錯誤;B.含有兩個未知數(shù),故錯誤;C.為一元二次方程,正確;D.含有分式,故錯誤,故選C.【點睛】此題主要考查一元二次方程的定義,解題的關(guān)鍵是熟知一元二次方程的特點.6、A【解析】

證出四邊形AMCN是平行四邊形,由平行四邊形的性質(zhì)得出選項B正確,由相似三角形的性質(zhì)得出選項C正確,由平行四邊形的面積公式得出選項D正確,即可得出結(jié)論.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∠BAD=∠BCD,∵M(jìn)、N分別是邊AB、CD的中點,∴CN=CD,AM=AB,∴CN=AM,∴四邊形AMCN是平行四邊形,∴AN∥CM,∠MAN=∠NCM,∴∠DAN=∠BCM,選項B正確;∴△BMQ∽△BAP,△DPN∽△DQC,∴BQ:BP=BM:AB=1:2,DP:DQ=DN:CD=1:2,∴DP=PQ,BQ=PQ,∴DP=PQ=QB,∴BP=DQ,選項C正確;∵AB=2AM,∴S?AMCN:S?ABCD=1:2,選項D正確;故選A.【點睛】此題考查了平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)等知識.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.7、A【解析】

根據(jù)平行四邊形的性質(zhì)可得AB=CD=5,AD=BC=3,AB∥CD,然后根據(jù)平行線的性質(zhì)可得∠EAB=∠AED,然后根據(jù)角平分線的定義可得∠EAB=∠EAD,從而得出∠EAD=∠AED,根據(jù)等角對等邊可得DA=DE=3,即可求出EC的長.【詳解】解:∵四邊形ABCD是平行四邊形,AB=5,BC=3,∴AB=CD=5,AD=BC=3,AB∥CD∴∠EAB=∠AED∵AE平分∠DAB∴∠EAB=∠EAD∴∠EAD=∠AED∴DA=DE=3∴EC=CD-DE=2故選A.【點睛】此題考查的是平行四邊形的性質(zhì)、平行線的性質(zhì)、角平分線的定義和等腰三角形的判定,掌握平行四邊形的性質(zhì)、平行線的性質(zhì)、角平分線的定義和等角對等邊是解決此題的關(guān)鍵.8、C【解析】

根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、是中心對稱圖形,故本選項正確;D、不是中心對稱圖形,故本選項錯誤.故選:C.【點睛】本題考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.9、D【解析】

先寫出各選項的逆命題,判斷出其真假即可解答.【詳解】解:A、其逆命題是“一個三角形的兩個底角相等,則這個三角形是等腰三角形”,正確,所以有逆定理;B、其逆命題是“對角線互相平分的四邊形是平行四邊形”,正確,所以有逆定理;C、其逆命題是“到角兩邊的距離相等的點在角平分線上”,正確,所以有逆定理;D、其逆命題是“兩個三角形中,三組角分別對應(yīng)相等,則這兩個三角形全等”,錯誤,所以沒有逆定理;故選:D.【點睛】本題考查的是命題與定理的區(qū)別,正確的命題叫定理.10、B【解析】分析:根據(jù)一次函數(shù)的性質(zhì),通過判斷k和b的符號來判斷函數(shù)所過的象限及函數(shù)與x軸y軸的交點.詳解:在y=﹣2x+1中,∵k=﹣2<0,∴y隨x的增大而減?。弧遙=1>0,∴函數(shù)與y軸相交于正半軸,∴可知函數(shù)過第一、二、四象限;∵k=﹣2≠2,∴圖象與直線y=2x相交,直線y=﹣2x向上平移1個單位,得到函數(shù)解析式為y=﹣2x+1.故選B.點睛:本題考查了一次函數(shù)的性質(zhì),知道系數(shù)和圖形的關(guān)系式解題的關(guān)鍵.11、B【解析】

根據(jù)矩形的性質(zhì)和菱形的性質(zhì)得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因為四邊形BEDF是菱形,所以BE,AE可求出進(jìn)而可求出BC的長.【詳解】∵四邊形ABCD是矩形,∴∠A=90°,即BA⊥BF,∵四邊形BEDF是菱形,∴EF⊥BD,∠EBO=∠DBF,∵EF=AE+FC,AE=CF,EO=FO∴AE=EO=CF=FO,∴AB=BO=3,∠ABE=∠EBO,∴∠ABE=∠EBD=∠DBC=30°,∴BE=,∴BF=BE=2,∴CF=AE=,∴BC=BF+CF=3,故選B.12、D【解析】

根據(jù)被開方數(shù)是非負(fù)數(shù),可得答案.【詳解】解:由題意,得3﹣x≥0,解得x≤3,故選:D.【點睛】本題考查了二次根式有意義的條件,利用被開方數(shù)是非負(fù)數(shù)得出不等式是解題關(guān)鍵.二、填空題(每題4分,共24分)13、乙【解析】

從折線圖中得出甲乙的射擊成績,再利用方差的公式計算.【詳解】解:由圖中知,甲的成績?yōu)?,9,7,8,10,7,9,10,7,10,乙的成績?yōu)?,7,8,9,8,9,10,9,9,9,

=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,

甲的方差S甲2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35乙的方差S乙2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,∴S2乙<S2甲.

故答案為:乙.【點睛】本題考查了方差的定義與意義,熟記方差的計算公式是解題的關(guān)鍵,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.14、【解析】

根據(jù)題意拼圖,再運用勾股定理求解即可【詳解】如圖,將直角邊為的邊長對齊拼成平行四邊形,它的對角線最長為:(cm).故答案為:.【點睛】本題主要考查平行四邊形的判定及勾股定理的應(yīng)用,能夠畫出正確的圖形,并作簡單的計算.15、5:1(或1:5)【解析】

先根據(jù)菱形的性質(zhì)求出邊長,再根據(jù)直角三角形的性質(zhì)求出,得出,即可得出結(jié)論.【詳解】解:如圖所示:四邊形是菱形,菱形的周長為8,,,,,,,,故答案為:5:1(或1:5).【點睛】本題考查了菱形的性質(zhì)、含角的直角三角形的判定;熟練掌握菱形的性質(zhì)和含角的直角三角形的判定是解決問題的關(guān)鍵.16、x-1【解析】

分別對2個多項式因式分解,再取公因式.【詳解】解:多項式=a(x+1)(x-1)2x2-4x+2=2(x-1)2所以兩個多項式的公因式是x-1【點睛】本題考查公因式相關(guān),熟練掌握并利用求多項式公因式的方法進(jìn)行分析是解題的關(guān)鍵.17、2【解析】∵點P的坐標(biāo)為,∴OP=,即點P到原點的距離為2.故答案為2.點睛:平面直角坐標(biāo)系中,點P到原點的距離=.18、6<v<2或v=4.2【解析】

利用極限值法找出小卉走過的路程y與小紅上山時間x之間的函數(shù)圖象經(jīng)過的點的坐標(biāo),由點的坐標(biāo)利用待定系數(shù)法可求出y與x之間的函數(shù)關(guān)系式,再結(jié)合函數(shù)圖象,即可找出小卉上山平均速度v(米/分鐘)的取值范圍.【詳解】解:設(shè)小卉走過的路程y與小紅上山時間x之間的函數(shù)關(guān)系式為y=kx+b(k≠0).將(0,1)、(30,300)代入y=kx+b,得:,解得:,∴此種情況下,y關(guān)于x的函數(shù)關(guān)系式為y=2x+1;將(0,1)、(70,420)代入y=kx+b,得:,解得:,∴此種情況下,y關(guān)于x的函數(shù)關(guān)系式為y=6x+1;將(0,1)、(50,300)代入y=kx+b,得:,解得:,∴此種情況下,y關(guān)于x的函數(shù)關(guān)系式為y=4.2x+1.觀察圖形,可知:小卉上山平均速度v(米/分鐘)的取值范圍是6<v<2或v=4.2.故答案為6<v<2或v=4.2【點睛】本題考查了一次函數(shù)的應(yīng)用以及待定系數(shù)法求出一次函數(shù)解析式,根據(jù)點的坐標(biāo),利用待定系數(shù)法求出一次函數(shù)解析式是解題的關(guān)鍵.三、解答題(共78分)19、(1)y=2x2+;(2)y=﹣.【解析】

(1)設(shè)y1=k1x2,y2=,根據(jù)y=y(tǒng)1﹣y2,列出y與k1,k2和x之間的函數(shù)關(guān)系,再將x,y的已知量代入,便能求出k1,k2的值,進(jìn)而得到y(tǒng)關(guān)于x的函數(shù)關(guān)系式.

(2)把x=-代入y關(guān)于x的函數(shù)關(guān)系式即可.【詳解】解:(1)設(shè)y1=k1x2,y2=,∵y=y(tǒng)1﹣y2,∴y=k1x2﹣,把x=1,y=3代入y=k1x2﹣得:k1﹣k2=3①,把x=﹣1,y=1代入y=k1x2﹣得:k1+k2=1②,①,②聯(lián)立,解得:k1=2,k2=﹣1,即y關(guān)于x的函數(shù)關(guān)系式為y=2x2+,(2)把x=﹣代入y=2x2+,解得y=﹣.【點睛】本道題主要考查了學(xué)生對待定系數(shù)法求正比例函數(shù)解析式、反比例函數(shù)解析式的熟練掌握情況,能夠正確的表示出y、x的函數(shù)關(guān)系式,進(jìn)而用待定系數(shù)法求得其解析式是解答此題的關(guān)鍵.20、(1)1<x<1;(2),面積為.【解析】

(1)根據(jù)交點坐標(biāo),由函數(shù)圖象即可求解;(2)運用待定系數(shù)法,求得一次函數(shù)和反比例函數(shù)的解析式,再根據(jù)解方程組求得C(0,4),最后根據(jù)S△AOB=S△AOC-S△BOC進(jìn)行計算即可求解.【詳解】(1)根據(jù)圖象得:在第一象限內(nèi),當(dāng)1<x<1時,y1>y2.(2)把A(1,2)代入y2=中得k2=1×2=2,∴反比例函數(shù)的解析式為y2=,分別過點A、B作AE⊥x軸于E,BF⊥x軸于F,則AE=yA=2,把xB=1代入y2=中,得yB=,則BF=,把A(1,2)代入y1=?x+b中,得:?+b=2,∴b=.∴一次函數(shù)的解析式為y1=?x+;當(dāng)yc=0時,?x+=0,得:x=4,則OC=4,∴S△AOB=S△AOC-S△BOC=?OC(AE?BF)=×4(2?)=.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點問題,解決問題的關(guān)鍵是運用待定系數(shù)法求得一次函數(shù)和反比例函數(shù)的解析式.解題時注意:求正比例函數(shù),只要一對x,y的值就可以;而求一次函數(shù)y=kx+b,則需要兩組x,y的值.21、(1),,(2),(3)能,,(4)【解析】

(1)先把(1,3)代入求出k的值,再由兩函數(shù)有交點求出m的值,根據(jù)函數(shù)圖象即可得出結(jié)論;(2)根據(jù)線段OC最短可知OC為∠AOB的平分線,對于,令,即可得出C點坐標(biāo),把代入中求出的值即可得出P點坐標(biāo);(3)當(dāng)OC=OD時,四邊形O′COD為菱形,由對稱性得到△AOC≌△BOD,即OA=OB,由此時P橫縱坐標(biāo)相等且在直線上即可得出結(jié)論.(4)設(shè),則,,根據(jù)PD=DB,構(gòu)建方程求出,即可解決問題.【詳解】解:(1)∴反比例函數(shù)(x>0,k≠0)的圖象進(jìn)過點(1,3),∴把(1,3)代入,解得,.∵,∴,,∴由圖象得:;(2)∵線段OC最短時,∴OC為∠AOB的平分線,∵對于,令,∴,即C,∴把代入中,得:,即P;(3)四邊形O′COD能為菱形,∵當(dāng)OC=OD時,四邊形O′COD為菱形,∴由對稱性得到△AOC≌△BOD,即OA=OB,∴此時P橫縱坐標(biāo)相等且在直線上,即,解得:,即P.(4)設(shè)B,則,∵PD=DB,∴,解得:(舍棄),∴,D,,,【點睛】本題屬于反比例函數(shù)綜合題,考查的是反比例函數(shù)的圖像與性質(zhì),涉及到菱形的判定與性質(zhì)、全等三角形的判定與性質(zhì)等知識,在解答此題時要注意利用數(shù)形結(jié)合求解.22、(1);(2)2和4.【解析】

(1)利用平均數(shù)的計算公式列出關(guān)于x的方程,求出x即可求出答案;(2)根據(jù)眾數(shù)的定義即可求出答案.【詳解】解:(1)由平均數(shù)為1,得,解得:.(2)當(dāng)時,這組數(shù)據(jù)是2,2,1,4,4,其中有兩個2,也有兩個4,是出現(xiàn)次數(shù)最多的,∴這組數(shù)據(jù)的眾數(shù)是2和4.【點睛】本題考查平均數(shù)和眾數(shù),熟練掌握平均數(shù)的計算公式和眾數(shù)的定義是解決本題的關(guān)鍵.在(2)中,一定記住一組數(shù)的眾數(shù)有可能有幾個.23、(1)確定共需租用6輛汽車;(2)最節(jié)省費用的租車方案是租用甲種客車輛,乙種客車輛.【解析】

(1)首先根據(jù)總?cè)藬?shù)個車座確定租用的汽車數(shù)量,關(guān)鍵要注意每輛汽車上至少要有名教師.(2)根據(jù)題意設(shè)租用甲種客車輛,共需費用元,則租用乙種客車輛,因此可列出方程,再利用不等式列出不等式組,即可解得x的范圍,在分類計算費用,選擇較便宜的.【詳解】解:(1)由使名學(xué)生和名教師都有座位,租用汽車輛數(shù)必需不小于輛;每輛汽車上至少要有名教師,租用汽車輛數(shù)必需不大于6輛.所以,根據(jù)題干所提供的信息,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論