2022-2023學(xué)年黑龍江省佳木斯市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第1頁
2022-2023學(xué)年黑龍江省佳木斯市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第2頁
2022-2023學(xué)年黑龍江省佳木斯市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第3頁
2022-2023學(xué)年黑龍江省佳木斯市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第4頁
2022-2023學(xué)年黑龍江省佳木斯市普通高校對口單招數(shù)學(xué)自考真題(含答案)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年黑龍江省佳木斯市普通高校對口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(22題)1.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()A.0B.-8C.2D.10

2.下列四個命題:①垂直于同一條直線的兩條直線相互平行;②垂直于同一個平面的兩條直線相互平行;③垂直于同一條直線的兩個平面相互平行;④垂直于同一個平面的兩個平面相互平行.其中正確的命題有()A.1個B.2個C.3個D.4個

3.設(shè)a,b為實數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

4.如果直線3x+y=1與2mx+4y-5=0互相垂直,則m為()A.1

B.

C.

D.-2

5.某商場有四類食品,其中糧食類、植物油類、動物性食品類及果蔬類分別有40種、10種、30種、20種,現(xiàn)從中抽取一個容量為20的樣本進行食品安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是()A.4B.5C.6D.7

6.某中學(xué)有高中生3500人,初中生1500人.為了解學(xué)生的學(xué)習(xí)情況,用分層抽樣的方法從該校學(xué)生中抽取一個容量為n的樣本,已知從高中生中抽取70人,則n為()A.100B.150C.200D.250

7.把6本不同的書分給李明和張強兩人,每人3本,不同分法的種類數(shù)為()A.

B.

C.

D.

8.一個幾何體的三視圖如圖所示,則該幾何體可以是()A.棱柱B.棱臺C.圓柱D.圓臺

9.以坐標(biāo)軸為對稱軸,離心率為,半長軸為3的橢圓方程是()A.

B.或

C.

D.或

10.已知x與y之間的一組數(shù)據(jù):則y與x的線性回歸方程為y=bx+a必過點()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,4)

11.“x=1”是“x2-1=0”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件

12.過點A(-1,0),B(0,-1)直線方程為()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0

13.已知a=(1,-1),b=(-1,2),則(2a+b)×a=()A.1B.-1C.0D.2

14.A.π

B.C.2π

15.設(shè)a=log32,b=log52,c=log23,則()A.a>c>bB.b>c>aC.c>b>aD.c>a>b

16.“沒有公共點”是“兩條直線異面”的()A.充分而不必要條件B.充分必要條件C.必要而不充分條件D.既不充分也不必要條件

17.直線2x-y+7=0與圓(x-b2)+(y-b2)=20的位置關(guān)系是()A.相離B.相交但不過圓心C.相交且過圓心D.相切

18.已知角α的終邊經(jīng)過點(-4,3),則cosα()A.4/5B.3/5C.-3/5D.-4/5

19.函數(shù)f(x)=log2(3x-1)的定義域為()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

20.函數(shù)y=1/2x2-lnx的單調(diào)遞減區(qū)間為().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)

21.等差數(shù)列{an}中,若a2+a4+a9+a11=32,則a6+a7=()A.9B.12C.15D.16

22.設(shè)a=1/2,b=5-1/2則()A.a>bB.a=bC.a<bD.不能確定

二、填空題(10題)23.

24.

25.已知一個正四棱柱的底面積為16,高為3,則該正四棱柱外接球的表面積為_____.

26.已知△ABC中,∠A,∠B,∠C所對邊為a,b,c,C=30°,a=c=2.則b=____.

27.口袋裝有大小相同的8個白球,4個紅球,從中任意摸出2個,則兩球顏色相同的概率是_____.

28.若f(x-1)=x2-2x+3,則f(x)=

。

29.

30.算式的值是_____.

31.雙曲線x2/4-y2/3=1的虛軸長為______.

32.在△ABC中,若acosA=bcosB,則△ABC是

三角形。

三、計算題(10題)33.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.

34.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

35.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

36.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.

37.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).

38.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

39.在等差數(shù)列{an}中,前n項和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項公式an.

40.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

41.有語文書3本,數(shù)學(xué)書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

42.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.

四、簡答題(10題)43.平行四邊形ABCD中,CBD沿對角線BD折起到平面CBD丄平面ABD,求證:AB丄DE。

44.計算

45.某中學(xué)試驗班有同學(xué)50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動,求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。

46.已知拋物線y2=4x與直線y=2x+b相交與A,B兩點,弦長為,求b的值。

47.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長

48.已知A,B分別是橢圓的左右兩個焦點,o為坐標(biāo)的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標(biāo)準(zhǔn)方程

49.組成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個數(shù)

50.已知拋物線的焦點到準(zhǔn)線L的距離為2。(1)求拋物線的方程及焦點下的坐標(biāo)。(2)過點P(4,0)的直線交拋物線AB兩點,求的值。

51.已知雙曲線C的方程為,離心率,頂點到漸近線的距離為,求雙曲線C的方程

52.已知雙曲線C:的右焦點為,且點到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點,若|PF1|=,求點P到C的左焦點的距離.

五、解答題(10題)53.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調(diào)性.

54.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點,PA垂直于⊙O所在的平面,且PA=AB=10,設(shè)點C為⊙O上異于A,B的任意一點.(1)求證:BC⊥平面PAC;(2)若AC=6,求三棱錐C-PAB的體積.

55.

56.解不等式4<|1-3x|<7

57.已知函數(shù)f(x)=ex(ax+b)—x2—4x,曲線:y=f(x)在點(0,f(0))處的切線方程為y=4x+4.(1)求a,b的值;(2)討論f(x)的單調(diào)性,并求f(x)的極大值.

58.已知函數(shù)f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[-π/6,π/4]上的最大值和最小值.

59.

60.在銳角△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c(1)求c的值;(2)求sinA的值.

61.

62.

六、單選題(0題)63.A.

B.

C.

D.

參考答案

1.B直線之間位置關(guān)系的性質(zhì).由k=4-m/m+2=-2,得m=-8.

2.B直線與平面垂直的性質(zhì),空間中直線與直線之間的位置關(guān)系.①垂直于同一條直線的兩條直線相互平行,不正確,如正方體的一個頂角的三個邊就不成立;②垂直于同一個平面的兩條直線相互平行,根據(jù)線面垂直的性質(zhì)定理可知正確;③垂直于同一條直線的兩個平面相互平行,根據(jù)面面平行的判定定理可知正確;④垂直于同一個平面的兩個平面相互平行,不正確,如正方體相鄰的三個面就不成立.

3.D

4.C由兩條直線垂直可得:,所以答案為C。

5.C分層抽樣方法.四類食品的比例為4:1:3:2,則抽取的植物油類的數(shù)量為20×1/10=2,抽取的果蔬類的數(shù)量為20×2/10=4,二者之和為6,

6.A分層抽樣方法.樣本抽取比70/3500=1/50例為該校總?cè)藬?shù)為1500+3500=5000,則=n/5000=1/50,∴n=100.

7.D

8.D空間幾何體的三視圖.從俯視圖可看出該幾何體上下底面為半徑不等的圓,正視圖與側(cè)視圖為等腰梯形,故此幾何體為圓臺.

9.B由題意可知,焦點在x軸或y軸上,所以標(biāo)準(zhǔn)方程有兩個,而a=3,c/a=1/3,所以c=1,b2=8,因此答案為B。

10.D線性回歸方程的計算.由于

11.A充要條件的判斷.若x=1,則x2-1=0成立.x2-1=0,則x=1或x=-1,故x=1不-定成立.所以“x=1”是“x2-1=0”的充分不必要條件.

12.C直線的兩點式方程.點代入驗證方程.

13.A平面向量的線性運算.因為a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1

14.C

15.D數(shù)值大小的比較.a=㏒32<㏒33=l,c=㏒23>㏒22=l,而b=㏒52<㏒1/32=a,∴b<a<c

16.C

17.D由題可知,直線2x-y+7=0到圓(x-b)2+(y-b)2=20的距離等于半徑,所以二者相切。

18.D三角函數(shù)的定義.記P(-4,3),則x=-4,y=3,r=|OP|=,故cosα=x/r=-4/5

19.A函數(shù)的定義.由3x-1>0,得3x>1,即3x>30,∴x>0.

20.B函數(shù)的單調(diào)性.∵y=1/2x2-Inx,∴y=x-1/x,由:y'<0,解得-1≤x≤1,又x>0,∴0<x≤1.

21.D∵{an}是等差數(shù)列,所以a2+a11=a4+a9=a6+a7.∵a2+a4+a9+a11=32,所以a6+a7=16.

22.A數(shù)值的大小判斷

23.56

24.5

25.41π,由題可知,底面邊長為4,底面對角線為,外接球的直徑即由高和底面對角線組成的矩形的對角線,所以外接球的直徑為,外接球的表面積為。

26.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2

27.

28.

29.π/3

30.11,因為,所以值為11。

31.2雙曲線的定義.b2=3,.所以b=.所以2b=2.

32.等腰或者直角三角形,

33.

34.

35.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時,y=-4∴直線l在y軸上的截距為-4

36.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

37.

38.

39.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

40.

41.

42.

43.

44.

45.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

46.

47.

48.點M是線段PB的中點又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標(biāo)準(zhǔn)方程為

49.

50.(1)拋物線焦點F(,0),準(zhǔn)線L:x=-,∴焦點到準(zhǔn)線的距離p=2∴拋物線的方程為y2=4x,焦點為F(1,0)(2)直線AB與x軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論