



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
《折疊問題的理技巧》考點動向折疊問題在教材中有所體現(xiàn)是立體幾何傳統(tǒng)的典型問題合高考試題源于課本高于課本的基本命題理念同折問題既可以考查空間想象能力考查學生的動手能力及比較等思維方式,因此,一直是備考與命題的重點.方法范例例(2005湖南)如圖7-1,已知
A
是上、下底邊長分別為2和,高為
的等腰梯形,將它沿對稱軸
OO1
折成直二面角.(Ⅰ)證明:
BO1
;(Ⅱ)求二面角
OAC1
的大?。甇
CDO
C
DO
BA
OB
圖7-1
A解
本題是立體幾何中有證有求的典型問題以借助向量解答助三垂線定理證明直線異面垂直然作二面的平面角并之.也可以借助空間向量,轉化為直線的方向向量及平面法向量的關系問題解答.解1(:由題設知
OAOO1
,
O
z
COB1
.所以
是所折成的直二面
D角的平面角OA.可以為點,OAOB,所在直線分別為軸軸1軸建立空間直角坐標系如72則相關
A
OB-2
各點的坐標是
(3,0,0)
,
,C(0,1,3)
,O
.從而
AC
,
11111111BO,3.所以ACBO11
.(II)解:因為
BO3
,所以
OCBO1
,由(I
1
,所以
BO1
平面
OAC
,
BO
是平面
的一個法向量.設
n,y
是平面
O
的一個法向量,由
0,
取
z
,得
3)
.設面角O的大小為,、BO的方向可知,>1所以
,1|n||BO|4
.即二面角
O1
的大小是arccos
34
.解法2(I)證明:由題設知
OAO,1
OB,以是折成的直二面角的平面1角,即
OA
.從
AO
平面
1
,
是
B
在面
OC的射影.因為1
A
圖73B
OBOO
O33,OOO1
所
,OC36
,從而
OC1
,由三垂線定理得
BO1
.(II)解由(I
OC,BO,知BO面OAC.OC111
,過點E作AC于F,結OF(圖7-3),則是OF在平AOC內射11影,由三垂線定理得
OFAC1
.所以
OFE1
是二面角
O1
的平面角.由題設知OAOOOC11
,
所
以
OA1
2
OO1
3
,ACOA1
2
1
2
,從而
A23F11AC
,又
OOsin
O13所以sinFEOF41
,即二角
O1
的大
小是arcsin
.規(guī)律結折疊問題往往描述的也是一個運動變化的過程需要能夠想象出折疊的過程,并對折疊前后相應的數(shù)量關系和位置關系的變化有十分清楚的認識是那些沒有變化的量及位置關系,往往對解題起到關鍵性的作用.考點誤區(qū)分析解答折疊類問題最忌沒有認識折疊前后的變化就盲目解答要加強對比認變化產(chǎn)生的解題影響及作用需培讀圖能力以及動手能力平時訓練時需對折疊問題涉及的圖形進行動手演示觀察的要親自動手做一下到考試時不用動手也可以想到具體情形.同訓1.(2005·江)設M,N是角梯形
CABCD
兩腰的中點,
DE
于
(如圖7
N-4).現(xiàn)將
△ADE
沿
DE
折起,使二面角DE為45A在面內的射影恰為點BM,的連線與所成角
-4
的大小等于_.2東75腰形
ABCD中,
ABCD,60E為AB的點,將與BEC別沿上折起,使
AB
重合于點
,則
PDCE
三棱錐的外接球的
圖7-5體積為()(
36()2
()
(D)3.(·江蘇在三角形中、、分是AC、BC邊上的點,滿足AE:EB==CP:PB=(圖7-5將△AEF沿EF折到△AEF使二面角A-EFB成二面角,連結AB、AP.11
的位置,
11(Ⅰ)求證AE⊥平面;1(Ⅱ)求直線A與面A所角的大?。?(Ⅲ)求二面角-AP-的?。ㄓ梅慈呛瘮?shù)表示)1AEEF
A
FBPC
B
PC[參答]1.[解析]如圖7-6,可知
為二面角
D
CDEB的平面角,于是BEA可知,則取中,MPNB,等直
N角三角形,有AEBP,AEMN.
[答案]
.
圖7-62.[解析]所求實
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西省太原市迎澤區(qū)太原實驗中學2025屆高三下學期期末調研生物試題含解析
- 中南林業(yè)科技大學《工業(yè)微生物育種實驗》2023-2024學年第二學期期末試卷
- 新疆輕工職業(yè)技術學院《大數(shù)據(jù)分析綜合實踐》2023-2024學年第二學期期末試卷
- 鐵嶺衛(wèi)生職業(yè)學院《建筑制圖CAD》2023-2024學年第二學期期末試卷
- 長江工程職業(yè)技術學院《微生物遺傳與育種》2023-2024學年第二學期期末試卷
- 有機化學原料的環(huán)境友好合成策略考核試卷
- 電動機制造中的質量改進循環(huán)考核試卷
- 游樂設施施工環(huán)境保護法律法規(guī)考核試卷
- 動物用藥店的市場營銷渠道整合與拓展策略考核試卷
- 電感器在電力系統(tǒng)有源濾波器中的應用考核試卷
- 協(xié)作機器人比賽理論試題庫(含答案)
- 部編四年級語文下冊 《記金華雙龍洞 》說課課件
- DL∕T 5161.6-2018 電氣裝置安裝工程質量檢驗及評定規(guī)程 第6部分:接地裝置施工質量檢驗
- 8.1科學立法、嚴格執(zhí)法、公正司法、全民守法(課件+視頻)-【中職課堂】高二政治《職業(yè)道德與法治》
- 實驗訓練2數(shù)據(jù)查詢操作
- 四年級下冊勞動浙教版《任務三 布袋的制作》(教案)
- 《巍巍井岡山》教學設計
- 餐飲宴會營銷方案策劃(2篇)
- 希爾頓酒店品牌策略分析
- 2024年公務員考試常識題400道及參考答案(滿分必刷)
- 江蘇省南京市聯(lián)合體2023-2024學年八年級下學期期中考試英語試題
評論
0/150
提交評論