廣東省梅州市梅南中學(xué)2021-2022學(xué)年高二數(shù)學(xué)理模擬試題含解析_第1頁
廣東省梅州市梅南中學(xué)2021-2022學(xué)年高二數(shù)學(xué)理模擬試題含解析_第2頁
廣東省梅州市梅南中學(xué)2021-2022學(xué)年高二數(shù)學(xué)理模擬試題含解析_第3頁
廣東省梅州市梅南中學(xué)2021-2022學(xué)年高二數(shù)學(xué)理模擬試題含解析_第4頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省梅州市梅南中學(xué)2021-2022學(xué)年高二數(shù)學(xué)理模擬試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.當(dāng)x∈[﹣2,﹣1],不等式ax3﹣x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是()A.[﹣5,﹣3] B.(﹣∞,﹣] C.(﹣∞,﹣2] D.[﹣4,﹣3]參考答案:C【考點(diǎn)】函數(shù)恒成立問題.【分析】根據(jù)x的范圍,不等式可整理為a≤﹣﹣,構(gòu)造函數(shù)f(x)=﹣﹣,通過導(dǎo)函數(shù)得出函數(shù)的單調(diào)性,求出函數(shù)的最小值即可.【解答】解:x∈[﹣2,﹣1],ax3﹣x2+4x+3≥0,∴ax3﹣x2+4x+3≥0可化為a≤﹣﹣,令f(x)=﹣﹣,f'(x)=﹣,當(dāng)﹣2≤x<﹣1時(shí),f′(x)<0,f(x)單調(diào)遞減,∴f(x)≥f(﹣1)=﹣2,∴a≤﹣2.故選C.2.設(shè)M=a+(2<a<3),N=log0.5(x2+)(x∈R)那么M、N的大小關(guān)系是()A.M>N

B.M=N

C.M<N

D.不能確定參考答案:A3.在等差數(shù)列{an}中,7a5+5a9=0,且a5<a9,則使數(shù)列前n項(xiàng)和Sn取得最小值的n等于A、5

B、6

C、7

D、8參考答案:B4.如圖,已知曲邊梯形ABCD的曲邊DC所在的曲線方程為,e是自然對(duì)數(shù)的底,則曲邊梯形的面積是A.1

B.e

C.

D.參考答案:A5.在△ABC中,,△ABC的周長是18,則定點(diǎn)C的軌跡方程是(

). A. B. C. D.參考答案:D∵,,∴,又∵的周長為,∴,∴頂點(diǎn)的軌跡是一個(gè)以、為焦點(diǎn)的橢圓.則,,,∴頂點(diǎn)的軌跡方程為.故選.6.,已知,則(

)A.

B.

C.

D.參考答案:A7.在同一坐標(biāo)系中,方程的曲線大致是(

)參考答案:D略8.平面內(nèi)有兩個(gè)定點(diǎn)和一動(dòng)點(diǎn),設(shè)命題甲,是定值,命題乙:點(diǎn)的軌跡是雙曲線,則命題甲是命題乙的

充分但不必要條件

必要不充分條件

充要條件

既不充分也不必要條件參考答案:B略9.已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c.若,則△ABC的面積為(

)A.

B.

C.1

D.參考答案:B10.已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:),可得這個(gè)幾何體的體積是

(

)(A)

(B)

(C)

(D)

參考答案:B略二、填空題:本大題共7小題,每小題4分,共28分11.不等式的解集為

.參考答案:12.已知x,y滿足約束條件,若z=ax+y的最大值為4,則a=.參考答案:2【考點(diǎn)】簡單線性規(guī)劃.【專題】計(jì)算題;函數(shù)思想;數(shù)形結(jié)合法;不等式的解法及應(yīng)用.【分析】作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值【解答】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).則A(2,0),B(1,1),若z=ax+y過A時(shí)取得最大值為4,則2a=4,解得a=2,此時(shí),目標(biāo)函數(shù)為z=2x+y,即y=﹣2x+z,平移直線y=﹣2x+z,當(dāng)直線經(jīng)過A(2,0)時(shí),截距最大,此時(shí)z最大為4,滿足條件,若z=ax+y過B時(shí)取得最大值為4,則a+1=4,解得a=3,此時(shí),目標(biāo)函數(shù)為z=3x+y,即y=﹣3x+z,平移直線y=﹣3x+z,當(dāng)直線經(jīng)過A(2,0)時(shí),截距最大,此時(shí)z最大為6,不滿足條件,故a=2;故答案為:2.【點(diǎn)評(píng)】本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,確定目標(biāo)函數(shù)的斜率關(guān)系是解決本題的關(guān)鍵.13.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是x軸,拋物線上的點(diǎn)M(﹣3,m)到焦點(diǎn)的距離為5,則m=

.參考答案:【考點(diǎn)】K8:拋物線的簡單性質(zhì).【分析】設(shè)拋物線的方程,求得準(zhǔn)線方程,根據(jù)拋物線的定義求得p的值,將x=﹣3代入拋物線方程,即可求得m的值.【解答】解:由題意設(shè)拋物線的標(biāo)準(zhǔn)方程:y2=﹣2px,(p>0),焦點(diǎn)F(﹣,0),準(zhǔn)線方程:x=,由拋物線的定義可知:M到焦點(diǎn)的距離與M到準(zhǔn)線的距離相等,則丨﹣3﹣丨=5,解得:p=4,則拋物線方程y2=﹣8x,當(dāng)x=﹣3時(shí),y=,故答案為:.【點(diǎn)評(píng)】本題考查拋物線的定義及方程,考查計(jì)算能力,屬于基礎(chǔ)題.14.若點(diǎn)三點(diǎn)共線,則的值為_____________.參考答案:415.數(shù)列{an}是公差不為0的等差數(shù)列,且a2+a6=a8,則=________.參考答案:316.若雙曲線的漸近線方程為,則雙曲線的離心率為

.參考答案:17.設(shè)數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{}的前10項(xiàng)的和為.參考答案:【考點(diǎn)】數(shù)列的求和;數(shù)列遞推式.【專題】等差數(shù)列與等比數(shù)列.【分析】數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),利用“累加求和”可得an=.再利用“裂項(xiàng)求和”即可得出.【解答】解:∵數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),∴當(dāng)n≥2時(shí),an=(an﹣an﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.當(dāng)n=1時(shí),上式也成立,∴an=.∴=2.∴數(shù)列{}的前n項(xiàng)的和Sn===.∴數(shù)列{}的前10項(xiàng)的和為.故答案為:.【點(diǎn)評(píng)】本題考查了數(shù)列的“累加求和”方法、“裂項(xiàng)求和”方法、等差數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.偏差是指個(gè)別測定值與測定的平均值之差,在成績統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某科考試成績與該科班平均分的差叫某科偏差,在某次考試成績統(tǒng)計(jì)中,某老師為了對(duì)學(xué)生數(shù)學(xué)偏差x(單位:分)與物理偏差y(單位:分)之間的關(guān)系進(jìn)行分析,隨機(jī)挑選了8位同學(xué),得到他們的兩科成績偏差數(shù)據(jù)如下:學(xué)生序號(hào)12345678數(shù)學(xué)偏差x20151332﹣5﹣10﹣18物理偏差y6.53.53.51.50.5﹣0.5﹣2.5﹣3.5(1)若x與y之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(2)若該次考試該班數(shù)學(xué)平均分為120分,物理平均分為91.5分,試由(1)的結(jié)論預(yù)測數(shù)學(xué)成績?yōu)?28分的同學(xué)的物理成績.參考數(shù)據(jù):=20×6.5+15×3.5+13×3.5+3×1.5+2×0.5+(﹣5)×(﹣0.5)+(﹣10)×(﹣2.5)+(﹣18)×(﹣3.5)=324x=202+152+132+32+22+(﹣5)2+(﹣10)2+(﹣18)2=1256.參考答案:解:(1)由題意,,

,

所以,

,

故關(guān)于的線性回歸方程:.

(2)由題意,設(shè)該同學(xué)的物理成績?yōu)椋瑒t物理偏差為:.而數(shù)學(xué)偏差為128-120=8,

∴,

解得,

所以,可以預(yù)測這位同學(xué)的物理成績?yōu)?4分.

略19.(本題滿分12分)已知函數(shù).(I)若,求函數(shù)的單調(diào)區(qū)間;(II)若以函數(shù)圖像上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值.參考答案:(I)當(dāng)時(shí),,定義域?yàn)椋?--------------------------------3分當(dāng)時(shí),,當(dāng)時(shí),∴f(x)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞).-------------5分1220.某同學(xué)參加3門課程的考試.假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績的概率為,第二、第三門課程取得優(yōu)秀成績的概率分別為p、q(p>q)且不同課程是否取得優(yōu)秀成績相互獨(dú)立.記ξ為該生取得優(yōu)秀成績的課程數(shù),其分布列為(1)

求該生至少有1門課程取得優(yōu)秀成績的概率;(2)

求p,q的值;(3)

求數(shù)學(xué)期望E(ξ)參考答案:(2)由題意知

P(ξ=0)=P()=(1-p)(1-q)=,

P(ξ=3)=P()=pq=

整理得pq=,p+q=1

由p>q,可得p=,q=

7分

(3)由題意知a=P(ξ=1)=P()+P()+P()

=(1-p)(1-q)+p(1-q)+p(1-p)q=b=P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=E(ξ)=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=…

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論