版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年畢節(jié)幼兒師范高等專科學校高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知線段AB的兩端點坐標為A(9,-3,4),B(9,2,1),則線段AB與坐標平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面內(nèi)的向量的一般形式為a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故選:C2.到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()
A.直線
B.橢圓
C.拋物線
D.雙曲線答案:D3.過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(0,2)在圓x2+y2=4上,∴過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是0x+2y=4,即y=2.故為:y=2.4.在極坐標系中,點A(2,π2)關(guān)于直線l:ρcosθ=1的對稱點的一個極坐標為______.答案:在直角坐標系中,A(0,2),直線l:x=1,A關(guān)于直線l的對稱點B(2,2).由于|OB|=22,OB直線的傾斜角等于π4,且點B在第一象限,故B的極坐標為(22,π4),故為
(22,π4).5.某海域內(nèi)有一孤島,島四周的海平面(視為平面)上有一淺水區(qū)(含邊界),其邊界是長軸長為2a,短軸長為2b的橢圓,已知島上甲、乙導航燈的海拔高度分別為h1、h2,且兩個導航燈在海平面上的投影恰好落在橢圓的兩個焦點上,現(xiàn)有船只經(jīng)過該海域(船只的大小忽略不計),在船上測得甲、乙導航燈的仰角分別為θ1、θ2,那么船只已進入該淺水區(qū)的判別條件是______.答案:依題意,|MF1|+|MF2|≤2a?h1?cotθ1+h2?cotθ2≤2a;故為:h1?cotθ1+h2?cotθ2≤2a6.有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時針旋轉(zhuǎn)45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1;
(Ⅱ)請寫出△ABC在矩陣M-1對應的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標系與參數(shù)方程
過P(2,0)作傾斜角為α的直線l與曲線E:x=cosθy=22sinθ(θ為參數(shù))交于A,B兩點.
(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5
不等式證明選講)
已知正實數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:a+b+c≤3;
(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)
cos(-45°)=2222-2222∵矩陣M表示變換“順時針旋轉(zhuǎn)45°”∴矩陣M-1表示變換“逆時針旋轉(zhuǎn)45°”∴M-1=cos45°-sin45°sin45°
cos45°=22-2222
22(Ⅱ)三角形ABC的面積S△ABC=12×(3-1)×2=2,由于△ABC在旋轉(zhuǎn)變換下所得△A1B1C1與△ABC全等,故三角形的面積不變,即S△A1B1C1=2.(2)(Ⅰ)曲線E的普通方程為x2+2y2=1L的參數(shù)方程為x=2+tcosαy=tsinα(t為參數(shù))
(Ⅱ)將L的參數(shù)方程代入由線E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)證明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3當且僅當a=b=c=1,取等號.(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,則2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,當且僅當a=b=1時,c有最大值1.7.已知x、y的取值如下表:x0134y2.24.34.86.7從散點圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=______.答案:點(.x,.y)在回歸直線上,計算得.x=2,.y=4.5;代入得a=2.6;故為2.6.8.(選做題)參數(shù)方程中當t為參數(shù)時,化為普通方程為(
)。答案:x2-y2=19.已知a、b、c是實數(shù),且a2+b2+c2=1,求2a+b+2c的最大值.答案:因為已知a、b、c是實數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值為3.10.已知P(B|A)=,P(A)=,則P(AB)=()
A.
B.
C.
D.答案:D11.如圖是為求1~1000的所有偶數(shù)的和而設(shè)計的一個程序空白框圖,將空白處補上.
①______.②______.答案:本程序的作用是求1~1000的所有偶數(shù)的和而設(shè)計的一個程序,由于第一次執(zhí)行循環(huán)時的循環(huán)變量S初值為0,循環(huán)變量S=S+i,計數(shù)變量i為2,步長為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.12.判斷下列各組中的兩個函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域為R,故A錯誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域為R,g(x)的定義域為:{x|x≥0},故D錯誤;故選B.13.橢圓x225+y29=1的兩焦點為F1,F(xiàn)2,一直線過F1交橢圓于P、Q,則△PQF2的周長為______.答案:∵a=5,由橢圓第一定義可知△PQF2的周長=4a.∴△PQF2的周長=20.,故為20.14.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為1015.下列各組集合,表示相等集合的是()
①M={(3,2)},N={(2,3)};
②M={3,2},N={2,3};
③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不對答案:①中M中表示點(3,2),N中表示點(2,3);②中由元素的無序性知是相等集合;③中M表示一個元素,即點(1,2),N中表示兩個元素分別為1,2.所以表示相等的集合是②.故選B.16.下面玩擲骰子放球游戲,若擲出1點或6點,甲盒放一球;若擲出2點,3點,4點或5點,乙盒放一球,設(shè)擲n次后,甲、乙盒內(nèi)的球數(shù)分別為x、y.
(1)當n=3時,設(shè)x=3,y=0的概率;
(2)當n=4時,求|x-y|=2的概率.答案:由題意知,在甲盒中放一球概率為13,在乙盒放一球的概率為23(3分)(1)當n=3時,x=3,y=0的概率為C03(13)3(23)0=127(6分)(2)|x-y|=2時,有x=3,y=1或x=1,y=3,它的概率為C14
(13)3(23)1+C34(13)1(23)3=4081(12分).17.已知雙曲線的兩條準線將兩焦點間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.18.對于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復操作,則第2012次操作后得到的數(shù)是
()A.25B.250C.55D.133答案:第1次操作為23+53=133,第2次操作為13+33+33=55,第3次操作為53+53=250,第4次操作為23+53+03=133∴操作結(jié)果,以3為周期,循環(huán)出現(xiàn)∵2012=3×670+2∴第2012次操作后得到的數(shù)與第2次操作后得到的數(shù)相同∴第2012次操作后得到的數(shù)是55故選C.19.已知雙曲線的漸近線方程為2x±3y=0,F(xiàn)(0,-5)為雙曲線的一個焦點,則雙曲線的方程為()
A.
B.
C.
D.答案:B20.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,則OE=______(用a,b,c表示)答案:在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,∴OE=12(OA+OD)=OA2+OD2=12a+12×12(OB+OC)=12a+14(b+c)=12a+14b+14c,故為:12a+14b+14c.21.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()
A.
B.
C.0
D.1答案:A22.將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”和“3次正面朝上,1次反面朝上”的概率各是多少?答案:將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”的概率p1=C24(12)2(12)2=38.將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“3次正面朝上,1次反面朝上”的概率p2=C34(12)3?12=14.23.試求288和123的最大公約數(shù)是
答案:3解析:,,,.∴和的最大公約數(shù)24.已知:在△ABC中,AD為∠BAC的平分線,AD的垂直平分線EF與AD交于點E,與BC的延長線交于點F,若CF=4,BC=5,則DF=______.答案:連接FA,如下圖所示:∵EF垂直平分AD,∴FA=FD,∠FAD=∠FDA.即∠FAC+∠CAD=∠B+∠BAD.又∠CAD=∠BAD.故∠FAC=∠B;又∠AFC=∠BFA.∴△ABF∽△CAF.∴AF2=CF?BF=4?(4+5)=36∴DF=AF=6故為:625.①學校為了了解高一學生的情況,從每班抽2人進行座談;②一次數(shù)學競賽中,某班有10人在110分以上,40人在90~100分,12人低于90分.現(xiàn)在從中抽取12人了解有關(guān)情況;③運動會服務人員為參加400m決賽的6名同學安排跑道.就這三件事,合適的抽樣方法為()A.分層抽樣,分層抽樣,簡單隨機抽樣B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣答案:①是從較多的一個總體中抽取樣本,且總體之間沒有差異,故用系統(tǒng)抽樣,②是從不同分數(shù)的總體中抽取樣本,總體之間的差異比較大,故用分層抽樣,③是六名運動員選跑道,用簡單隨機抽樣,故選D.26.下列語句是命題的是______.
①求證3是無理數(shù);
②x2+4x+4≥0;
③你是高一的學生嗎?
④一個正數(shù)不是素數(shù)就是合數(shù);
⑤若x∈R,則x2+4x+7>0.答案:①是祈使句,所以①不是命題.②是命題,能夠判斷真假,因為x2+4x+4=(x+2)2≥0,所以②是命題.③是疑問句,所以③不是命題.④能夠判斷真假,所以④是命題.⑤能夠判斷真假,因為x2+4x+7=(x+2)2+3>0,所以⑤是命題.故為:②④⑤.27.如果:在10進制中2004=4×100+0×101+0×102+2×103,那么類比:在5進制中數(shù)碼2004折合成十進制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.28.如圖,在△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0,若點B的坐標為(1,2),求點A和點C的坐標.答案:點A為y=0與x-2y+1=0兩直線的交點,∴點A的坐標為(-1,0).∴kAB=2-01-(-1)=1.又∵∠A的平分線所在直線的方程是y=0,∴kAC=-1.∴直線AC的方程是y=-x-1.而BC與x-2y+1=0垂直,∴kBC=-2.∴直線BC的方程是y-2=-2(x-1).由y=-x-1,y=-2x+4,解得C(5,-6).∴點A和點C的坐標分別為(-1,0)和(5,-6)29.一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;
(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學期望E(X).答案:(I)“恰好第2次中獎“即為“第一次摸到的2個白球,第二次至少有1個紅球”,其概率為C24C27×C23+C13C12C25=935;(II)摸一次中獎的概率為p=C23+C13C14C27=57,由條件知X~B(4,p),∴EX=np=4×57=207.30.某學校為了解該校1200名男生的百米成績(單位:秒),隨機選擇了50名學生進行調(diào)查.如圖是這50名學生百米成績的頻率分布直方圖.根據(jù)樣本的頻率分布,估計這1200名學生中成績在[13,15](單位:秒)內(nèi)的人數(shù)大約是______.答案:∵由圖知,前面兩個小矩形的面積=0.02×1+0.18×1=0.2,即頻率,∴1200名學生中成績在[13,15](單位:s)內(nèi)的人數(shù)大約是0.2×1200=240.故為240.31.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對應邊長之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:932.已知a,b,c,d都是正數(shù),S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,則S的取值范圍是______.答案:∵a,b,c,d都是正數(shù),∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故為:(1,2)33.如果命題“曲線C上的點的坐標都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線C是方程f(x,y)=0的曲線
B.方程f(x,y)=0的每一組解對應的點都在曲線C上
C.不滿足方程f(x,y)=0的點(x,y)不在曲線C上
D.方程f(x,y)=0是曲線C的方程答案:C34.l1,l2,l3是空間三條不同的直線,則下列命題正確的是[
]A.l1⊥l2,l2⊥l3l1∥l3
B.l1⊥l2,l2∥l3l1⊥l3
C.l1∥l2∥l3l1,l2,l3共面
D.l1,l2,l3共點l1,l2,l3共面答案:B35.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.36.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.37.(a+b)6的展開式的二項式系數(shù)之和為______.答案:根據(jù)二項式系數(shù)的性質(zhì):二項式系數(shù)和為2n所以(a+b)6展開式的二項式系數(shù)之和等于26=64故為:64.38.中心在原點,一個焦點坐標為(0,5),短軸長為4的橢圓方程為______.答案:依題意,此橢圓方程為標準方程,且焦點在y軸上,設(shè)為y2a2+x2b2=1∵橢圓的焦點坐標為(0,5),短軸長為4,∴c=5,b=2∵a2=b2+c2,∴橢圓的長半軸長為a=4+25=29∴此橢圓的標準方程為y229+x24=1故為y229+x24=139.已知:如圖,⊙O1與⊙O2外切于C點,AB一條外公切線,A、B分別為切點,連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=,則的值為()
A.
B.
C.2
D.3
答案:C40.雙曲線x2-4y2=4的兩個焦點F1、F2,P是雙曲線上的一點,滿足·=0,則△F1PF2的面積為()
A.1
B.
C.2
D.答案:A41.m為何值時,關(guān)于x的方程8x2-(m-1)x+(m-7)=0的兩根,
(1)為正數(shù);
(2)一根大于2,一根小于2.答案:(1)設(shè)方程兩根為x1,x2,則∵方程的兩根為正數(shù),∴△≥0x1+x2>0x1x2>0即[-(m-1)]2-4×8×(m-7)>0--(m-1)8>0m-78>0解得7<m≤9或m≥25.(2)令f(x)=8x2-(m-1)x+(m-7),由題意得f(2)<0,解得m>27.42.已知P為x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,則PF2+PF1=______.答案:∵x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,∴根據(jù)橢圓的定義,可得|PF2|+|PF1|=2×2=4故為:443.若點(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:344.方程.12
41x
x21-3
9.=0的解集為______.答案:.12
41x
x21-3
9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.45.點P(2,5)關(guān)于直線x+y=1的對稱點的坐標是(
)。答案:(-4,-1)46.(選做題)那霉素發(fā)酵液生物測定,一般都規(guī)定培養(yǎng)溫度為(37±1)°C,培養(yǎng)時間在16小時以上,某制藥廠為了縮短時間,決定優(yōu)選培養(yǎng)溫度,試驗范圍固定在29~50°C,精確度要求±1°C,用分數(shù)法安排實驗,令第一試點在t1處,第二試點在t2處,則t1+t2=(
).答案:7947.已知點O為△ABC外接圓的圓心,且有,則△ABC的內(nèi)角A等于()
A.30°
B.60°
C.90°
D.120°答案:A48.過點A(1,4)且在x、y軸上的截距相等的直線共有______條.答案:當直線過坐標原點時,方程為y=4x,符合題意;當直線不過原點時,設(shè)直線方程為x+y=a,代入A的坐標得a=1+4=5.直線方程為x+y=5.所以過點A(1,4)且在x、y軸上的截距相等的直線共有2條.故為2.49.點(2,0,3)在空間直角坐標系中的位置是在()
A.y軸上
B.xOy平面上
C.xOz平面上
D.第一卦限內(nèi)答案:C50.若直線l與直線2x+5y-1=0垂直,則直線l的方向向量為______.答案:直線l與直線2x+5y-1=0垂直,所以直線l:5x-2y+k=0,所以直線l的方向向量為:(2,5).故為:(2,5)第2卷一.綜合題(共50題)1.雙曲線C的焦點在x軸上,離心率e=2,且經(jīng)過點P(2,3),則雙曲線C的標準方程是______.答案:設(shè)雙曲線C的標準方程x2a2-y2b2=1,∵經(jīng)過點P(2,3),∴2a2-3b2=1
①,又∵e=2=a2+b2a
②,由①②聯(lián)立方程組并解得
a2=1,b2=3,雙曲線C的標準方程是x2-y23=1,故為:x2-y23=1.2.設(shè)向量與的夾角為θ,,,則cosθ等于()
A.
B.
C.
D.答案:D3.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個零點比1大,一個零點比1小,則實數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個零點比1大,一個零點比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實數(shù)a的取值范圍為(-2,1)故為:(-2,1)4.隋機變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C5.設(shè),是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實數(shù)m為()
A.-2
B.2
C.-
D.不存在答案:A6.如圖,AB是⊙O的直徑,P是AB延長線上的一點.過P作⊙O的切線,切點為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個含有30°角的三角形,∴BC=12AB,三角形BPC是一個等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:47.從四個公司按分層抽樣的方法抽取職工參加知識競賽,其中甲公司共有職工96人.若從甲、乙、丙、丁四個公司抽取的職工人數(shù)分別為12,21,25,43,則這四個公司的總?cè)藬?shù)為()
A.101
B.808
C.1212
D.2012答案:B8.設(shè)點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因為點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以O(shè)A=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.9.O是正六邊形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O為端點的向量中:
(1)與a相等的向量有
______;
(2)與b相等的向量有
______;
(3)與c相等的向量有
______.答案:如圖,在O是正六邊形ABCDE的中心,以A,B,C,D,E,O為端點的向量中(1)與a相等的向量有EF,DO,CB;(2)與b相等的向量有DC,EO,F(xiàn)A;(3)與c相等的向量有FO,OC,ED.故三個空依次應填EF,DO,CB;DC,EO,F(xiàn)A;FO,OC,ED.10.已知方程x2-6x+a=0的兩個不等實根均大于2,則實數(shù)a的取值范圍為()
A.[4,9)
B.(4,9]
C.(4,9)
D.(8,9)答案:D11.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對應邊長之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:912.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個四邊形是
______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.13.已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個小組分別獨立開展該種子的發(fā)芽試驗,每次試驗種一粒種子,假定某次試驗種子發(fā)芽,則稱該次試驗是成功的,如果種子沒有發(fā)芽,則稱該次試驗是失敗的.
(1)第一個小組做了三次試驗,求至少兩次試驗成功的概率;
(2)第二個小組進行試驗,到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.答案:(1)(2)解析:(1)第一個小組做了三次試驗,至少兩次試驗成功的概率是P(A)=·+=.(2)第二個小組在第4次成功前,共進行了6次試驗,其中三次成功三次失敗,且恰有兩次連續(xù)失敗,其中各種可能的情況種數(shù)為=12.因此所求的概率為P(B)=12×·=.14.在某次數(shù)學考試中,考生的成績X~N(90,100),則考試成績X位于區(qū)間(80,90)上的概率為______.答案:∵考生的成績X~N(90,100),∴正弦曲線關(guān)于x=90對稱,根據(jù)3?原則知P(80<x<100)=0.6829,∴考試成績X位于區(qū)間(80,90)上的概率為0.3413,故為:0.341315.甲、乙、丙、丁四名射擊選手在選撥賽中所得的平均環(huán)數(shù),其方差S2如下表所示,則選送參加決賽的最佳人選是()
甲
乙
丙
丁
8
9
9
8
S2
5.7
6.2
5.7
6.4
A.甲
B.乙
C.丙
D.丁答案:C16.從甲、乙、丙、丁四人中任選兩名代表,甲被選中的概率為
______.答案:由題意:甲、乙、丙、丁四人中任選兩名代表,共有六種情況:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每種情況出現(xiàn)的可能性相等,所以甲被選中的概率為12.故為:12.17.曲線C:x=t-2y=1t+1(t為參數(shù))的對稱中心坐標是______.答案:曲線C:x=t-2y=1t+1(t為參數(shù))即y-1=1x+2,其對稱中心為(-2,1).故為:(-2,1).18.已知回歸直線的斜率的估計值是1.23,樣本中心點為(4,5),若解釋變量的值為10,則預報變量的值約為()A.16.3B.17.3C.12.38D.2.03答案:設(shè)回歸方程為y=1.23x+b,∵樣本中心點為(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10時,y=12.38故選C.19.如圖,點O是正六邊形ABCDEF的中心,則以圖中點A、B、C、D、E、F、O中的任意一點為始點,與始點不同的另一點為終點的所有向量中,除向量外,與向量共線的向量共有()
A.2個
B.3個
C.6個
D.9個
答案:D20.若直線x=1的傾斜角為α,則α()A.等于0B.等于π4C.等于π2D.不存在答案:由題意知直線的斜率不存在,故傾斜角α=π2,故選C.21.將一根長為3m的繩子在任意位置剪斷,則剪得兩段的長都不小于1m的概率是()A.14B.13C.12D.23答案:記“兩段的長都不小于1m”為事件A,則只能在中間1m的繩子上剪斷,剪得兩段的長都不小于1m,所以事件A發(fā)生的概率
P(A)=13.故選B22.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長為()
A.4
B.2
C.4
D.3答案:A23.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整數(shù)值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整數(shù)指數(shù)函數(shù)在底數(shù)大于1時單調(diào)遞增的性質(zhì),得2x>x+8,即x>8,∴使此不等式成立的x的最小整數(shù)值為9.故為:9.24.用A、B、C三類不同的元件連接成兩個系統(tǒng)N1、N2當元件A、B、C都正常工作時,系統(tǒng)N1正常工作,當元件A正常工作且元件B、C至少有一個正常工作時,系統(tǒng)N2正常工作。已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90,分別求系統(tǒng)N1、N2正常工作的概率.
答案:0.792解析:解:分別記三個元件A、B、C能正常工作為事件A、B、C,由題意,這三個事件相互獨立,系統(tǒng)N1正常工作的概率為P(A·B·C)=P(A)·P(B)·P(C)=0.8′0.9′0.9=0.648系統(tǒng)N2中,記事件D為B、C至少有一個正常工作,則P(D)=1–P()="1–"P()·P()=1–(1–0.9)′(1–0.9)=0.99系統(tǒng)N2正常工作的概率為P(A·D)=P(A)·P(D)=0.8′0.99=0.792。25.若長方體的三個面的對角線長分別是a,b,c,則長方體體對角線長為()A.a(chǎn)2+b2+c2B.12a2+b2+c2C.22a2+b2+c2D.32a2+b2+c2答案:解析:設(shè)同一頂點的三條棱分別為x,y,z,則x2+y2=a2,y2+z2=b2,x2+z2=c2得x2+y2+z2=12(a2+b2+c2),則對角線長為12(a2+b2+c2)=22a2+b2+c2.故選C.26.試比較nn+1與(n+1)n(n∈N*)的大?。?/p>
當n=1時,有nn+1______(n+1)n(填>、=或<);
當n=2時,有nn+1______(n+1)n(填>、=或<);
當n=3時,有nn+1______(n+1)n(填>、=或<);
當n=4時,有nn+1______(n+1)n(填>、=或<);
猜想一個一般性的結(jié)論,并加以證明.答案:當n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,根據(jù)上述結(jié)論,我們猜想:當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當n=k+1時也成立,∴當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.27.下列圖象中不能作為函數(shù)圖象的是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的概念:如果在一個變化過程中,有兩個變量x、y,對于x的每一個值,y都有唯一確定的值與之對應,這時稱y是x的函數(shù).結(jié)合選項可知,只有選項B中是一個x對應1或2個y故選B.28.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:191029.m為何值時,關(guān)于x的方程8x2-(m-1)x+(m-7)=0的兩根,
(1)為正數(shù);
(2)一根大于2,一根小于2.答案:(1)設(shè)方程兩根為x1,x2,則∵方程的兩根為正數(shù),∴△≥0x1+x2>0x1x2>0即[-(m-1)]2-4×8×(m-7)>0--(m-1)8>0m-78>0解得7<m≤9或m≥25.(2)令f(x)=8x2-(m-1)x+(m-7),由題意得f(2)<0,解得m>27.30.設(shè)a1,a2,…,a2n+1均為整數(shù),性質(zhì)P為:對a1,a2,…,a2n+1中任意2n個數(shù),存在一種分法可將其分為兩組,每組n個數(shù),使得兩組所有元素的和相等求證:a1,a2,…,a2n+1全部相等當且僅當a1,a2,…,a2n+1具有性質(zhì)P.答案:證明:①當a1,a2,…,a2n+1全部相等時,從中任意2n個數(shù),將其分為兩組,每組n個數(shù),兩組所有元素的和相等,故性質(zhì)P成立.②下面證明:當a1,a2,…,a2n+1具有性質(zhì)P時,a1,a2,…,a2n+1全部相等.反證法:假設(shè)a1,a2,…,a2n+1不全部相等,則其中至少有一個整數(shù)和其它的整數(shù)不同,不妨設(shè)此數(shù)為a1,若a1在取出的2n個數(shù)中,將其分為兩組,每組n個數(shù),則a1在的那個組所有元素的和與另一個組所有元素的和不相等,這與性質(zhì)P矛盾,故假設(shè)不成立,所以,當a1,a2,…,a2n+1具有性質(zhì)P時,a1,a2,…,a2n+1全部相等.綜上,a1,a2,…,a2n+1全部相等當且僅當a1,a2,…,a2n+1具有性質(zhì)P.31.某總體容量為M,其中帶有標記的有N個,現(xiàn)用簡單隨機抽樣方法從中抽出一個容量為m的樣本,則抽取的m個個體中帶有標記的個數(shù)估計為()A.mNMB.mMNC.MNmD.N答案:由題意知,總體中帶有標記的魚所占比例是NM,故樣本中帶有標記的個數(shù)估計為mNM,故選A.32.某工廠生產(chǎn)A,B,C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產(chǎn)品有16件,則此樣本的容量為()
A.40
B.80
C.160
D.320答案:B33.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點B(2,4),與y軸的交點C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(2,4),與x軸的交點A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.34.已知m,n為正整數(shù).
(Ⅰ)用數(shù)學歸納法證明:當x>-1時,(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學歸納法證明:當x=0時,(1+x)m≥1+mx;即1≥1成立,x≠0時,證:用數(shù)學歸納法證明:(?。┊攎=1時,原不等式成立;當m=2時,左邊=1+2x+x2,右邊=1+2x,因為x2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設(shè)當m=k時,不等式成立,即(1+x)k≥1+kx,則當m=k+1時,∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當m=k+1時,不等式也成立.綜合(?。áⅲ┲?,對一切正整數(shù)m,不等式都成立.(Ⅱ)證:當n≥6,m≤n時,由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當n≥6時,(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當n≥6時,不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當n=1時,3≠4,等式不成立;當n=2時,32+42=52,等式成立;當n=3時,33+43+53=63,等式成立;當n=4時,34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當n=5時,同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當x=0或m=1時,原不等式中等號顯然成立,下用數(shù)學歸納法證明:當x>-1,且x≠0時,m≥2,(1+x)m>1+mx.①(?。┊攎=2時,左邊=1+2x+x2,右邊=1+2x,因為x≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設(shè)當m=k(k≥2)時,不等式①成立,即(1+x)k>1+kx,則當m=k+1時,因為x>-1,所以1+x>0.又因為x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當m=k+1時,不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當n≥6,m≤n時,∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設(shè)存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當n≥6時,不存在滿足該等式的正整數(shù)n.下同解法1.35.(選做題)
曲線(θ為參數(shù))與直線y=a有兩個公共點,則實數(shù)a的取值范圍是(
).答案:0<a≤136.閱讀如圖所示的程序框,若輸入的n是100,則輸出的變量S的值是()A.5051B.5050C.5049D.5048答案:根據(jù)流程圖所示的順序,該程序的作用是累加并輸出S=100+99+98+…+2,∵100+99+98+…+2=5049,故選C.37.下列說法正確的是()
A.向量
與向量是共線向量,則A、B、C、D必在同一直線上
B.向量與平行,則與的方向相同或相反
C.向量的長度與向量的長度相等
D.單位向量都相等答案:C38.在平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,則AE=______.(用a、b表示)答案:∵平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故為:34a+14b.39.已知關(guān)于x的方程2kx2-2x-3k-2=0的兩實根一個小于1,另一個大于1,求實數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實根一個小于1,另一個大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.40.圖為一個幾何體的三視國科,尺寸如圖所示,則該幾何體的體積為()A.23+π6B.23+4πC.33+π6D.33+4π3答案:由圖中數(shù)據(jù),下部的正三棱柱的高是3,底面是一個正三角形,其邊長為2,高為3,故其體積為3×12×2×3=33上部的球體直徑為1,故其半徑為12,其體積為4π3×(12)3=π6故組合體的體積是33+π6故選C41.從1,2,3,4,5,6,7這七個數(shù)字中任取兩個奇數(shù)和兩個偶數(shù),組成沒有重復數(shù)字的四位數(shù),其中奇數(shù)的個數(shù)為()
A.432
B.288
C.216
D.108答案:C42.設(shè)A=xn+x-n,B=xn-1+x1-n,當x∈R+,n∈N+時,求證:A≥B.答案:證明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得當x≥1時,x-1≥0,x2n-1-1≥0;當x<1時,x-1<0,x2n-1<0,即x-1與x2n-1-1同號.∴A-B≥0.∴A≥B.43.雙曲線x2n-y2=1(n>1)的兩個焦點為F1,F(xiàn)2,P在雙曲線上,且滿足|PF1|+|PF2|=2n+2,則△PF1F2的面積為______.答案:令|PF1|=x,|PF2|=y,依題意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2為直角三角形∴△PF1F2的面積為12xy=(2n+2+n)(n+2-n)=1故為:1.44.命題“有的三角形的三個內(nèi)角成等差數(shù)列”的否定是______.答案:根據(jù)特稱命題的否定為全稱命題可知,“有的三角形的三個內(nèi)角成等差數(shù)列”的否定為“任意三角形的三個內(nèi)角不成等差數(shù)列”,故為:任意三角形的三個內(nèi)角不成等差數(shù)列45.在平面幾何中,四邊形的分類關(guān)系可用以下框圖描述:
則在①中應填入______;在②中應填入______.答案:由題意知①對應的四邊形是一個有一組鄰邊相等的平行四邊形,∴這里是一個菱形,②處的圖形是一個有一條腰和底邊垂直的梯形,∴②處是一個直角梯形,故為:菱形;直角梯形.46.設(shè)拋物線x2=12y的焦點為F,經(jīng)過點P(2,1)的直線l與拋物線相交于A、B兩點,若點P恰為線段AB的中點,則|AF|+|BF|=______.答案:過點A,B,P分別作拋物線準線y=-3的垂線,垂足為C,D,Q,據(jù)拋物線定義,得|AF|+|BF|=|AC|+|BD|=2|PQ|=8.故為847.設(shè)函數(shù)g(x)=ex
x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))
=g(ln12)
=eln12=12故為:12.48.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()
A.9
B.1
C.-1
D.-9答案:C49.函數(shù)y=f(x)的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個不同的數(shù)x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,則n的取值范圍為()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直線y=kx,可以得出2,3,4個交點,故k=f(x)x(x>0)可分別有2,3,4個解.故n的取值范圍為2,3,4.故選B.50.如圖,l1、l2、l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點分別在l1、l2、l3上,則△ABC的邊長是()
A.2
B.
C.
D.
答案:D第3卷一.綜合題(共50題)1.下列選項中元素的全體可以組成集合的是()A.2013年1月風度中學高一級高個子學生B.校園中長的高大的樹木C.2013年1月風度中學高一級在校學生D.學?;@球水平較高的學生答案:因為集合中元素具有:確定性、互異性、無序性.所以A、B、D都不是集合,元素不確定;故選C.2.下列輸入語句正確的是()
A.INPUT
x,y,z
B.INPUT“x=”;x,“y=”;y
C.INPUT
2,3,4
D.INPUT
x=2答案:A3.已知f(x)在(0,2)上是增函數(shù),f(x+2)是偶函數(shù),那么正確的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根據(jù)函數(shù)的圖象的平移可得把f(x+2)向右平移2個單位可得f(x)的圖象f(x+2)是偶函數(shù),其圖象關(guān)于y軸對稱可知f(x)的圖象關(guān)于x=2對稱∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)單調(diào)遞增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故選:B4.下列說法中正確的是()
A.若∥,則與向相同
B.若||<||,則<
C.起點不同,但方向相同且模相等的兩個向量相等
D.所有的單位向量都相等答案:C5.點A(-,1)關(guān)于y軸的對稱點A′的坐標為(
)
A.(-,-1)
B.(,-1)
C.(-,1)
D.(,1)答案:D6.過點A(a,4)和B(-1,a)的直線的傾斜角等于45°,則a的值是______.答案:∵過點A(a,4)和B(-1,a)的直線的傾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故為:32.7.點M(4,)化成直角坐標為()
A.(2,)
B.(-2,-)
C.(,2)
D.(-,-2)答案:B8.底面直徑和高都是4cm的圓柱的側(cè)面積為______cm2.答案:∵圓柱的底面直徑和高都是4cm,∴圓柱的底面圓的周長是2π×2=4π∴圓柱的側(cè)面積是4π×4=16π,故為:16π.9.從四個公司按分層抽樣的方法抽取職工參加知識競賽,其中甲公司共有職工96人.若從甲、乙、丙、丁四個公司抽取的職工人數(shù)分別為12,21,25,43,則這四個公司的總?cè)藬?shù)為()
A.101
B.808
C.1212
D.2012答案:B10.若雙曲線與橢圓x216+y225=1有相同的焦點,與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設(shè)所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)11.用反證法證明命題:“三角形三個內(nèi)角至少有一個不大于60°”時,應假設(shè)______.答案:根據(jù)用反證法證明數(shù)學命題的方法和步驟,先把要證的結(jié)論進行否定,得到要證的結(jié)論的反面,而命題:“三角形三個內(nèi)角至少有一個不大于60°”的否定為“三個內(nèi)角都大于60°”,故為三個內(nèi)角都大于60°.12.在復平面內(nèi),記復數(shù)3+i對應的向量為OZ,若向量OZ饒坐標原點逆時針旋轉(zhuǎn)60°得到向量OZ所對應的復數(shù)為______.答案:向量OZ饒坐標原點逆時針旋轉(zhuǎn)60°得到向量所對應的復數(shù)為(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故為2i.13.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域為x>0,又函數(shù)f(x)=log2x定義域x>0,故選A.14.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個數(shù)為(
)
A.0個
B.1個
C.2個
D.無窮多個答案:C15.化簡的結(jié)果是()
A.a(chǎn)B.C.a(chǎn)2D.答案:B解析:分析:指數(shù)函數(shù)的性質(zhì)16.直角坐標xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()
A.25個
B.36個
C.100個
D.225個答案:D17.直線l過點(-3,1),且它的一個方向向量n=(2,-3),則直線l的方程為______.答案:設(shè)直線l的另一個方向向量為a=(1,k),其中k是直線的斜率可得n=(2,-3)與a=(1,k)互相平行∴12=k-3?k=-32所以直線l的點斜式方程為:y-1=-32(x+3)化成一般式:3x+2y+7=0故為:3x+2y+7=018.已知橢圓的中心在原點,對稱軸為坐標軸,焦點在x軸上,短軸的一個頂點B與兩個焦點F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標準方程.答案::設(shè)長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標準方程為x24+y2=1.19.如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出
(1)圖中與EF、CO共線的向量;
(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點可知,CE=EA,即與EA相等的向量為CE;20.過直線y=x上的一點作圓(x-5)2+(y-1)2=2的兩條切線l1,l2,當直線l1,l2關(guān)于y=x對稱時,它們之間的夾角為()
A.30°
B.45°
C.60°
D.90°答案:C21.橢圓有這樣的光學性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一焦點.一水平放置的橢圓形臺球盤,F(xiàn)1,F(xiàn)2是其焦點,長軸長2a,焦距為2c.一靜放在F1點處的小球(半徑忽略不計),受擊打后沿直線運動(不與直線F1F2重合),經(jīng)橢圓壁反彈后再回到點F1時,小球經(jīng)過的路程是()
A.4c
B.4a
C.2(a+c)
D.4(a+c)答案:B22.當x∈N+時,用“>”“<”或“=”填空:
(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根據(jù)指數(shù)函數(shù)的性質(zhì)得,當x∈N+時,(12)x<1,2x>1,則2x>(12)x,且2x<3x,則(12)x>(13)x,故為:<、>、<、>、<.23.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對應數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.y=0.7x+0.35,那么表中m的值為______.
x3456y2.5m44.5答案:∵根據(jù)所給的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵這組數(shù)據(jù)的樣本中心點在線性回歸直線上,∴11+m4=0.7×4.5+0.35,∴m=3,故為:324.已知A,B兩點的極坐標為(6,)和(8,),則線段AB中點的直角坐標為()
A.(,-)
B.(-,)
C.(,-)
D.(-,-)答案:D25.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.26.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當?shù)氖牵ǎ?/p>
①平行
②垂直
③相交
④斜交.
A.①②③④
B.①④②③
C.①③②④
D.②①③④
答案:C27.以橢圓上一點和橢圓兩焦點為頂點的三角形的面積最大值為1時,橢圓長軸的最小值為()
A.
B.
C.2
D.2
答案:D28.若點(2,-2)在圓(x-a)2+(y-a)2=16的內(nèi)部,則實數(shù)a的取值范圍是()
A.-2<a<2
B.0<a<2
C.a(chǎn)<-2或a>2
D.a(chǎn)=±2答案:A29.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}30.橢圓的兩個焦點坐標是()
A.(-3,5),(-3,-3)
B.(3,3),(3,-5)
C.(1,1),(-7,1)
D.(7,-1),(-1,-1)答案:B31.某班有40名學生,其中有15人是共青團員.現(xiàn)將全班分成4個小組,第一組有學生10人,共青團員4人,從該班任選一個學生代表.在選到的學生代表是共青團員的條件下,他又是第一組學生的概率為()A.415B.514C.14D.34答案:由于所有的共青團員共有15人,而第一小組有4人是共青團員,故在選到的學生代表是共青團員的條件下,他又是第一組學生的概率為415,故選A.32.已知:在△ABC中,AD為∠BAC的平分線,AD的垂直平分線EF與AD交于點E,與BC的延長線交于點F,若CF=4,BC=5,則DF=______.答案:連接FA,如下圖所示:∵EF垂直平分AD,∴FA=FD,∠FAD=∠FDA.即∠FAC+∠CAD=∠B+∠BAD.又∠CAD=∠BAD.故∠FAC=∠B;又∠AFC=∠BFA.∴△ABF∽△CAF.∴AF2=CF?BF=4?(4+5)=36∴DF=AF=6故為:633.用反證法證明某命題時,對結(jié)論:“自然數(shù)a,b,c中恰有一個偶數(shù)”正確的反設(shè)為()
A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高壓線區(qū)域樁機施工安全專項措施
- 施工現(xiàn)場安全用電管理措施
- 門窗工程施工管理流程
- 裝飾裝修工程施工組織計劃
- 飯店轉(zhuǎn)讓合同協(xié)議書范本
- 網(wǎng)上期貨交易合同書
- 房建工程合同范本
- 電商代運營合作協(xié)議范本
- 就業(yè)協(xié)議書范本
- 彩鋼瓦屋面施工環(huán)保方案
- 2025版國家開放大學法學本科《國際私法》歷年期末紙質(zhì)考試總題庫
- 機器人機構(gòu)學基礎(chǔ) 部分習題及答案(于靖軍 )
- 教科版2022-2023學年度上學期三年級科學上冊期末測試卷及答案(含八套題)
- DZ/T 0430-2023 固體礦產(chǎn)資源儲量核實報告編寫規(guī)范(正式版)
- 銅排載流量表
- 拌和站危險源清單及控制措施
- 沈晴霓《操作系統(tǒng)與虛擬化安全》courera課程答案總結(jié)
- 工程掛靠協(xié)議書模板
- 上海1933老場坊項目市場調(diào)研分析報告
- 龍門式數(shù)控火焰切割機橫向進給系統(tǒng)的設(shè)計畢業(yè)設(shè)計
- 拒絕轉(zhuǎn)院知情告知書.doc
評論
0/150
提交評論