2023年遼寧經(jīng)濟(jì)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年遼寧經(jīng)濟(jì)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年遼寧經(jīng)濟(jì)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年遼寧經(jīng)濟(jì)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年遼寧經(jīng)濟(jì)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年遼寧經(jīng)濟(jì)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長線于F,若AB=10,CD=8,則切線BF的長是

______.答案:連接OD,AB⊥CD于E,根據(jù)垂徑定理得到DE=4,在直角△ODE中,根據(jù)勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.2.把函數(shù)y=ex的圖像按向量=(2,3)平移,得到y(tǒng)=f(x)的圖像,則f(x)=(

A.ex+2+3

B.ex+2-3

C.ex-2+3

D.ex-2-3答案:C3.對任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對任意實(shí)數(shù)x,都有x*m=x,則m的值是[

]

A.4

B.-4

C.-5

D.6答案:A4.設(shè)雙曲線的焦點(diǎn)在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()

A.5

B.

C.

D.答案:C5.等邊三角形ABC中,P在線段AB上,且AP=λAB,若CP?AB=PA?PB,則實(shí)數(shù)λ的值是______.答案:設(shè)等邊三角形ABC的邊長為1.則|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP?AB=(CA+AP)?AB=CA?AB+

AP?AB=PA?PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化簡-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故為:2-226.解不等式logx(2x+1)>logx2.答案:當(dāng)0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;當(dāng)x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.綜上所述,原不等式的解集為{x|0<x<12或x>1}.7.(1)求過兩直線l1:7x-8y-1=0和l2:2x+17y+9=0的交點(diǎn),且平行于直線2x-y+7=0的直線方程.

(2)求點(diǎn)A(--2,3)關(guān)于直線l:3x-y-1=0對稱的點(diǎn)B的坐標(biāo).答案:(1)聯(lián)立兩條直線的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1與l2交點(diǎn)坐標(biāo)是(-1127,-1327).(2)設(shè)與直線2x-y+7=0平行的直線l方程為2x-y+c=0因?yàn)橹本€l過l1與l2交點(diǎn)(-1127,-1327).所以c=13所以直線l的方程為6x-3y+1=0.點(diǎn)P(-2,3)關(guān)于直線3x-y-1=0的對稱點(diǎn)Q的坐標(biāo)(a,b),則b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,對稱點(diǎn)的坐標(biāo)(10,-1)8.若x,y∈R,則“x=0”是“x+yi為純虛數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.不充分也不必要條件答案:根據(jù)復(fù)數(shù)的分類,x+yi為純虛數(shù)的充要條件是x=0,y≠0.“若x=0則x+yi為純虛數(shù)”是假命題,反之為真.∴x,y∈R,則“x=0”是“x+yi為純虛數(shù)”的必要不充分條件故選B9.在平面直角坐標(biāo)系xOy中,設(shè)F1(-4,0),F(xiàn)2(4,0),方程x225+y29=1的曲線為C,關(guān)于曲線C有下列命題:

①曲線C是以F1、F2為焦點(diǎn)的橢圓的一部分;

②曲線C關(guān)于x軸、y軸、坐標(biāo)原點(diǎn)O對稱;

③若P是上任意一點(diǎn),則PF1+PF2≤10;

④若P是上任意一點(diǎn),則PF1+PF2≥10;

⑤曲線C圍成圖形的面積為30.

其中真命題的序號是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線段,如圖故①④錯(cuò),②③對對于⑤,圖形的面積為3×52×4=30,故⑤對.故為②③⑤10.袋子A和袋子B均裝有紅球和白球,從A中摸出一個(gè)紅球的概率是13,從B中摸出一個(gè)紅球的概率是P.

(1)從A中有放回地摸球,每次摸出一個(gè),共摸5次,求恰好有3次摸到紅球的概率;

(2)若A、B兩個(gè)袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率為25,求P的值.答案:(1)每次從A中摸一個(gè)紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個(gè)球,A、B兩個(gè)袋子中的球數(shù)之比為1:2,則B中有2m個(gè)球,∵將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是25,∴13m+2mp3m=25,解得p=1330.11.已知圖形F上的點(diǎn)A按向量平移前后的坐標(biāo)分別是和,若B()是圖形F上的又一點(diǎn),則在F按向量平移后得到的圖形F,上B,的坐標(biāo)是(

)A.B.C.D.答案:選D解析:設(shè)向量,則平移公式為依題意有∴平移公式為將B點(diǎn)坐標(biāo)代入可得B,點(diǎn)的坐標(biāo)為.所以選D.12.一部記錄影片在4個(gè)單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個(gè)單位看成四個(gè)位置,在四個(gè)位置進(jìn)行全排列,故有A44種結(jié)果,故選C.13.從裝有2個(gè)紅球和2個(gè)黒球的口袋內(nèi)任取2個(gè)球,那么互斥而不對立的兩個(gè)事件是()

A.至少有一個(gè)黒球與都是紅球

B.至少有一個(gè)黒球與都是黒球

C.至少有一個(gè)黒球與至少有1個(gè)紅球

D.恰有1個(gè)黒球與恰有2個(gè)黒球答案:D14.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故選D.15.若,,,則

(

)

A.

B.

C.

D.答案:A16.如圖,AB是半圓O的直徑,C是AB延長線上一點(diǎn),CD切半圓于D,CD=4,AB=3BC,則AC的長是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設(shè)BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長是8.故填:8.17.將兩枚質(zhì)地均勻透明且各面分別標(biāo)有1,2,3,4的正四面體玩具各擲一次,設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則P(B|A)=______.答案:設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},包括以下12個(gè)基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則包括以下6個(gè)基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故為12.18.以下命題:

①二直線平行的充要條件是它們的斜率相等;

②過圓上的點(diǎn)(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2;

③平面內(nèi)到兩定點(diǎn)的距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓;

④拋物線上任意一點(diǎn)M到焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線的距離.

其中正確命題的標(biāo)號是______.答案:①兩條直線平行的充要條件是它們的斜率相等,且截距不等,故①不正確,②過點(diǎn)(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2.②正確,③不正確,若平面內(nèi)到兩定點(diǎn)距離之和等于常數(shù),如這個(gè)常數(shù)正好為兩個(gè)點(diǎn)的距離,則動點(diǎn)的軌跡是兩點(diǎn)的連線段,而不是橢圓;④根據(jù)拋物線的定義知:拋物線上任意一點(diǎn)M到焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線的距離.故④正確.故為:②④.19.以橢圓x23+y2=1的右焦點(diǎn)為焦點(diǎn),且頂點(diǎn)在原點(diǎn)的拋物線標(biāo)準(zhǔn)方程為______.答案:∵橢圓x23+y2=1的右焦點(diǎn)F(2,0),∴以F(2,0)為焦點(diǎn),頂點(diǎn)在原點(diǎn)的拋物線標(biāo)準(zhǔn)方程為y2=42x.故為:y2=42x.20.某會議室第一排共有8個(gè)座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為()A.12B.16C.24D.32答案:將空位插到三個(gè)人中間,三個(gè)人有兩個(gè)中間位置和兩個(gè)兩邊位置就是將空位分為四部分,五個(gè)空位四分只有1,1,1,2空位五差別,只需要空位2分別占在四個(gè)位置就可以有四種方法,另外三個(gè)人排列A33=6根據(jù)分步計(jì)數(shù)可得共有4×6=24故選C.21.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個(gè)底邊長為8,高為4的等腰三角形,左視圖是一個(gè)底邊長為6、高為4的等腰三角形.則該幾何體的體積為______.答案:由題意幾何體復(fù)原是一個(gè)底面邊長為8,6的距離,高為4,且頂點(diǎn)在底面的射影是底面矩形的中心的四棱錐.底面矩形的面積是48所以幾何體的體積是:13×46×4=64故為:64.22.利用獨(dú)立性檢驗(yàn)對兩個(gè)分類變量是否有關(guān)系進(jìn)行研究時(shí),若有99.5%的把握說事件A和B有關(guān)系,則具體計(jì)算出的數(shù)據(jù)應(yīng)該是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C23.設(shè)矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-1224.若點(diǎn)M到定點(diǎn)F和到定直線l的距離相等,則下列說法正確的是______.

①點(diǎn)M的軌跡是拋物線;

②點(diǎn)M的軌跡是一條與x軸垂直的直線;

③點(diǎn)M的軌跡是拋物線或一條直線.答案:當(dāng)點(diǎn)F不在直線l上時(shí),點(diǎn)M的軌跡是以F為焦點(diǎn)、l為準(zhǔn)線的拋物線;而當(dāng)點(diǎn)F在直線l上時(shí),點(diǎn)M的軌跡是一條過點(diǎn)F,且與l垂直的直線.故為:③25.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()

A.1

B.2

C.-2

D.-1答案:D26.|a|=4,|b|=5,|a+b|=8,則a與b的夾角為______.答案:設(shè)a與b的夾角為θ因?yàn)閨a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故為arccos234027.如圖,A地到火車站共有兩條路徑L1和L2,據(jù)統(tǒng)計(jì),通過兩條路徑所用的時(shí)間互不影響,所用時(shí)間落在各時(shí)間段內(nèi)的頻率如下表:所用時(shí)間(分鐘)10~2020~3030~4040~5050~60L1的頻率0.10.20.30.20.2L2的頻率00.10.40.40.1現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時(shí)間用于趕往火車站.

(Ⅰ)為了盡最大可能在各自允許的時(shí)間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑?

(Ⅱ)用X表示甲、乙兩人中在允許的時(shí)間內(nèi)能趕到火車站的人數(shù),針對(Ⅰ)的選擇方案,求X的分布列和數(shù)學(xué)期望.答案:(Ⅰ)Ai表示事件“甲選擇路徑Li時(shí),40分鐘內(nèi)趕到火車站”,Bi表示事件“乙選擇路徑Li時(shí),50分鐘內(nèi)趕到火車站”,i=1,2.用頻率估計(jì)相應(yīng)的概率可得∵P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)∴甲應(yīng)選擇LiP(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙應(yīng)選擇L2.(Ⅱ)A,B分別表示針對(Ⅰ)的選擇方案,甲、乙在各自允許的時(shí)間內(nèi)趕到火車站,由(Ⅰ)知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨(dú)立,P(X=0)=P(.A.B)=P(.A)P(.B)=0.4×0.1=0.04P(x=1)=P(.AB+A.B)=P(.A)P(B)+P(A)P(.B)=0.4×0.9+0.6×0.1=0.42P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54X的分布列EX=0×0.04+1×0.42+2×0.54=1.5.28.若2x+3y=1,求4x2+9y2的最小值,并求出最小值點(diǎn).答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.當(dāng)且僅當(dāng)2x?1=3y?1,即2x=3y時(shí)取等號.由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值為12,最小值點(diǎn)為(14,16).29.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機(jī)剔除的個(gè)體數(shù)分別為()

A.3,2

B.2,3

C.2,30

D.30,2答案:A30.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測,這種抽樣方法是()

A.簡單隨機(jī)抽樣

B.系統(tǒng)抽樣

C.分層抽樣

D.其它抽樣方法答案:B31.從1,2,3,4,5,6,7這七個(gè)數(shù)字中任取兩個(gè)奇數(shù)和兩個(gè)偶數(shù),組成沒有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)的個(gè)數(shù)為()

A.432

B.288

C.216

D.108答案:C32.已知按向量平移得到,則

.答案:3解析:由平移公式可得解得.33.如圖是集合的知識結(jié)構(gòu)圖,如果要加入“全集”,則應(yīng)該放在()

A.“集合的概念”的下位

B.“集合的表示”的下位

C.“基本關(guān)系”的下位

D.“基本運(yùn)算”的下位答案:D34.用反證法證明命題“如果a>b,那么a3>b3“時(shí),下列假設(shè)正確的是()

A.a(chǎn)3<b3

B.a(chǎn)3<b3或a3=b3

C.a(chǎn)3<b3且a3=b3

D.a(chǎn)3>b3答案:B35.若直線l經(jīng)過點(diǎn)A(-1,1),且一個(gè)法向量為n=(3,3),則直線方程是______.答案:設(shè)直線的方向向量m=(1,k)∵直線l一個(gè)法向量為n=(3,3)∴m?n=0∴k=-1∵直線l經(jīng)過點(diǎn)A(-1,1)∴直線l的方程為y-1=(-1)×(x+1)即x+y=0故為x+y=036.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標(biāo)值相反,顯然能排除C、D;驗(yàn)證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯(cuò)誤.故選B.37.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為x=4cosθy=2sinθ(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,得曲線C2的極坐標(biāo)方程為ρ=2cosθ-4sinθ(ρ>0).

(Ⅰ)化曲線C1、C2的方程為普通方程,并說明它們分別表示什么曲線;

(Ⅱ)設(shè)曲線C1與x軸的一個(gè)交點(diǎn)的坐標(biāo)為P(m,0)(m>0),經(jīng)過點(diǎn)P作曲線C2的切線l,求切線l的方程.答案:(Ⅰ)曲線C1:x216+y24=1;曲線C2:(x-1)2+(y+2)2=5;(3分)曲線C1為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長半軸長是4,短半軸長是2的橢圓;曲線C2為圓心為(1,-2),半徑為5的圓(2分)(Ⅱ)曲線C1:x216+y24=1與x軸的交點(diǎn)坐標(biāo)為(-4,0)和(4,0),因?yàn)閙>0,所以點(diǎn)P的坐標(biāo)為(4,0),(2分)顯然切線l的斜率存在,設(shè)為k,則切線l的方程為y=k(x-4),由曲線C2為圓心為(1,-2),半徑為5的圓得|k+2-4k|k2+1=5,解得k=3±102,所以切線l的方程為y=3±102(x-4)(3分)38.在語句PRINT

3,3+2的結(jié)果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B39.搖獎(jiǎng)器有10個(gè)小球,其中8個(gè)小球上標(biāo)有數(shù)字2,2個(gè)小球上標(biāo)有數(shù)字5,現(xiàn)搖出3個(gè)小球,規(guī)定所得獎(jiǎng)金(元)為這3個(gè)小球上記號之和,求此次搖獎(jiǎng)獲得獎(jiǎng)金數(shù)額的數(shù)學(xué)期望.答案:設(shè)此次搖獎(jiǎng)的獎(jiǎng)金數(shù)額為ξ元,當(dāng)搖出的3個(gè)小球均標(biāo)有數(shù)字2時(shí),ξ=6;當(dāng)搖出的3個(gè)小球中有2個(gè)標(biāo)有數(shù)字2,1個(gè)標(biāo)有數(shù)字5時(shí),ξ=9;當(dāng)搖出的3個(gè)小球有1個(gè)標(biāo)有數(shù)字2,2個(gè)標(biāo)有數(shù)字5時(shí),ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)

答:此次搖獎(jiǎng)獲得獎(jiǎng)金數(shù)額的數(shù)字期望是395元.40.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()

A.-2

B.2

C.-8

D.8答案:C41.對于平面幾何中的命題:“夾在兩條平行線之間的平行線段相等”,在立體幾何中,類比上述命題,可以得到命題:“______”.答案:在由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時(shí),我們常用由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),故由平面幾何中的命題:“夾在兩條平行線這間的平行線段相等”,我們可以推斷在立體幾何中:“夾在兩個(gè)平行平面間的平行線段相等”這個(gè)命題是一個(gè)真命題.故為:“夾在兩個(gè)平行平面間的平行線段相等”.42.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c43.用數(shù)學(xué)歸納法證明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,當(dāng)n=1時(shí),左端為______.答案:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,當(dāng)n=1時(shí),3n+1=4,而等式左邊起始為1×4的連續(xù)的正整數(shù)積的和,故n=1時(shí),等式左端=1×4=4故為:4.44.點(diǎn)P,設(shè)△ABC的面積是△PBC的面積的m倍,那么m=()

A.1

B.

C.4

D.2答案:B45.點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(

A.-1<a<1

B.0<a<1

C.a(chǎn)<-1或a>1

D.a(chǎn)=±1答案:A46.利用計(jì)算機(jī)在區(qū)間(0,1)上產(chǎn)生兩個(gè)隨機(jī)數(shù)a和b,則方程有實(shí)根的概率為()

A.

B.

C.

D.1答案:A47.(選做題)

曲線(θ為參數(shù))與直線y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(

).答案:0<a≤148.如圖,AB是⊙O的直徑,AD是⊙O的切線,點(diǎn)C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長為______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.49.現(xiàn)有編號分別為1,2,3,4,5,6,7,8,9的九道不同的數(shù)學(xué)題,某同學(xué)從這九道題中一次隨機(jī)抽取兩道題,每題被抽到的概率是相等的,用符號(x,y)表示事件“抽到兩題的編號分別為x,y,且x<y”.

(1)共有多少個(gè)基本事件?并列舉出來.

(2)求該同學(xué)所抽取的兩道題的編號之和小于17但不小于11的概率.答案:(1)共有36種基本事件,列舉如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9);(2)設(shè)事件A=“兩道題的編號之和小于17但不小于11”則事件A包含事件有:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)共15種.∴P(A)=1536=512.50.已知某試驗(yàn)范圍為[10,90],若用分?jǐn)?shù)法進(jìn)行4次優(yōu)選試驗(yàn),則第二次試點(diǎn)可以是(

)。答案:40或60(不唯一)第2卷一.綜合題(共50題)1.化簡下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC2.200輛汽車經(jīng)過某一雷達(dá)地區(qū),時(shí)速頻率分布直方圖如圖所示,則時(shí)速不低于60km/h的汽車數(shù)量為

______輛.答案:時(shí)速不低于60km/h的汽車的頻率為(0.028+0.01)×10=0.38∴時(shí)速不低于60km/h的汽車數(shù)量為200×0.38=76故為:763.在方程(θ為參數(shù)且θ∈R)表示的曲線上的一個(gè)點(diǎn)的坐標(biāo)是()

A.(,)

B.(,)

C.(2,-7)

D.(1,0)答案:B4.如圖所示,判斷正整數(shù)x是奇數(shù)還是偶數(shù),(1)處應(yīng)填______.答案:根據(jù)程序的功能是判斷正整數(shù)x是奇數(shù)還是偶數(shù),結(jié)合數(shù)的奇偶性的定義,我們可得當(dāng)滿足條件是x是奇數(shù),不滿足條件時(shí)x為偶數(shù)故(1)中應(yīng)填寫r=1故為:r=15.某學(xué)校要從5名男生和2名女生中選出2人作為上海世博會志愿者,若用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),則數(shù)學(xué)期望Eξ______(結(jié)果用最簡分?jǐn)?shù)表示).答案:用隨機(jī)變量ξ表示選出的志愿者中女生的人數(shù),ξ可取0,1,2,當(dāng)ξ=0時(shí),表示沒有選到女生;當(dāng)ξ=1時(shí),表示選到一個(gè)女生;當(dāng)ξ=2時(shí),表示選到2個(gè)女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故為:476.如圖是一個(gè)正三棱柱體的三視圖,該柱體的體積等于()A.3B.23C.2D.33答案:根據(jù)長對正,寬相等,高平齊,可得底面正三角形高為3,三棱柱高為1所以正三角形邊長為3sin60°=2,所以V=12×2×3×1=3,故選A.7.對任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對任意實(shí)數(shù)x,都有x*m=x,則m的值是[

]

A.4

B.-4

C.-5

D.6答案:A8.拋物線y2=4x的焦點(diǎn)坐標(biāo)是()

A.(4,0)

B.(2,0)

C.(1,0)

D.答案:C9.已知f(x)=,a≠b,

求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一

∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當(dāng)1+ab<0時(shí),∵>0,∴不等式1+ab<成立.從而原不等式成立.當(dāng)1+ab≥0時(shí),要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二

∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.10.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小,則實(shí)數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實(shí)數(shù)a的取值范圍為(-2,1)故為:(-2,1)11.若E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有

EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.12.在平行四邊形ABCD中,AC與DB交于點(diǎn)O,E是線段OD的中點(diǎn),AE延長線與CD交于F.若AC=a,BD=b,則AF=()A.14a+12bB.23a+13bC.12a+14bD.13a+23b答案:∵由題意可得△DEF∽△BEA,∴DEEB=DFAB=13,再由AB=CD可得DFDC=13,∴DFFC=12.作FG平行BD交AC于點(diǎn)G,∴FGDO=CGCO=23,∴GF=23OD=13BD=13b.∵AG=AO+OG=AO+13OC=12AC+16AC=23AC=23a,∴AF=AG+GF=23a+13b,故選B.13.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()

A.0

B.

C.

D.答案:B14.曲線(θ為參數(shù))上的點(diǎn)到原點(diǎn)的最大距離為()

A.1

B.

C.2

D.答案:C15.由棱長為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,以這些棱錐的頂點(diǎn)為頂點(diǎn)的凸多面體的全面積是______.答案:由棱長為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,共可作6個(gè),得到6個(gè)頂點(diǎn),圍成一個(gè)正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對的兩頂點(diǎn)的距離應(yīng)為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個(gè)側(cè)面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a216.拋物線C:y=x2上兩點(diǎn)M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設(shè)M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因?yàn)镸N=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯(lián)立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.17.等腰三角形兩腰所在的直線方程是l1:7x-y-9=0,l2:x+y-7=0,它的底邊所在直線經(jīng)過點(diǎn)A(3,-8),求底邊所在直線方程.答案:設(shè)l1,l2,底邊所在直線的斜率分別為k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如圖,由等腰三角形性質(zhì),可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底邊經(jīng)過點(diǎn)A(3,-8),代入點(diǎn)斜式,得出直線方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)18.(選做題)那霉素發(fā)酵液生物測定,一般都規(guī)定培養(yǎng)溫度為(37±1)°C,培養(yǎng)時(shí)間在16小時(shí)以上,某制藥廠為了縮短時(shí)間,決定優(yōu)選培養(yǎng)溫度,試驗(yàn)范圍固定在29~50°C,精確度要求±1°C,用分?jǐn)?shù)法安排實(shí)驗(yàn),令第一試點(diǎn)在t1處,第二試點(diǎn)在t2處,則t1+t2=(

).答案:7919.一只螞蟻在三邊邊長分別為3,4,5的三角形的邊上爬行,某時(shí)刻該螞蟻距離三角形的三個(gè)頂點(diǎn)的距離均超過1的概率為______.答案:如下圖所示,當(dāng)螞蟻位于圖中紅色線段上時(shí),距離三角形的三個(gè)頂點(diǎn)的距離均超過1,由已知易得:紅色線段的長度和為:6三角形的周長為:12故P=612=12故為:1220.如圖是某賽季甲、乙兩名籃球運(yùn)動員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運(yùn)動員的判斷錯(cuò)誤的是()A.乙運(yùn)動員得分的中位數(shù)是28B.乙運(yùn)動員得分的眾數(shù)為31C.乙運(yùn)動員的場均得分高于甲運(yùn)動員D.乙運(yùn)動員的最低得分為0分答案:根據(jù)題意,可得甲的得分?jǐn)?shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分?jǐn)?shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分?jǐn)?shù)據(jù)按從小到大的順序排列,位于中間的兩個(gè)數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運(yùn)動員得分的中位數(shù)是28,A項(xiàng)是正確的;乙運(yùn)動員得分的眾數(shù)為31,B項(xiàng)是正確的;乙運(yùn)動員的場均得分高于甲運(yùn)動員,C各項(xiàng)是正確的.而D項(xiàng)因?yàn)橐疫\(yùn)動員的得分沒有0分,故D項(xiàng)錯(cuò)誤故選:D21.直線3x+5y-1=0與4x+3y-5=0的交點(diǎn)是()

A.(-2,1)

B.(-3,2)

C.(2,-1)

D.(3,-2)答案:C22.兩平行直線x+3y-4=0與2x+6y-9=0的距離是

______.答案:由直線x+3y-4=0取一點(diǎn)A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102023.在下列各圖中,每個(gè)圖的兩個(gè)變量具有線性相關(guān)關(guān)系的圖是()

A.(1)(2)

B.(1)(3)

C.(2)(4)

D.(2)(3)答案:D24.已知實(shí)數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點(diǎn)到原點(diǎn)的距離的最小值,轉(zhuǎn)化為坐標(biāo)原點(diǎn)到直線2x+y+5=0的距離,d=522+1=5.故選A.25.某市為抽查控制汽車尾氣排放的執(zhí)行情況,選擇了抽取汽車車牌號的末位數(shù)字是6的汽車進(jìn)行檢查,這樣的抽樣方式是(

A.抽簽法

B.簡單隨機(jī)抽樣

C.分層抽樣

D.系統(tǒng)抽樣答案:D26.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設(shè)M(x,y)為所求軌跡上任一點(diǎn),則由題意知1+|y|=x2+y2,化簡得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.27.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時(shí),屬醉酒駕車.據(jù)有關(guān)報(bào)道,2009年8月15日至8

月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對這500人血液中酒精含量進(jìn)行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時(shí),屬醉酒駕車,通過頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.28.不等式lgxx<0的解集是______.答案:∵lgx的定義域?yàn)椋?,+∞)∴x>0∵lgxx<0∴l(xiāng)gx<0=lg1即0<x<1∴不等式lgxx<0的解集是{x|0<x<1}故為:{x|0<x<1}29.根據(jù)如圖的框圖,寫出打印的第五個(gè)數(shù)是______.答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是:輸出N<35時(shí),打印A值.程序在運(yùn)行過程中各變量的情況如下表示:

是否繼續(xù)循環(huán)

A

N循環(huán)前

1

1

第一圈

2×1+1=3

2

是第二圈

2×3+1=7

3

是第三圈

2×7+1=15

4

是第四圈

2×15+1=31

5

是…所以這個(gè)打印的第五個(gè)數(shù)是31.故為:3130.如圖①y=ax,②y=bx,③y=cx,④y=dx,根據(jù)圖象可得a、b、c、d與1的大小關(guān)系為()

A.a(chǎn)<b<1<c<d

B.b<a<1<d<c

C.1<a<b<c<d

D.a(chǎn)<b<1<d<c

答案:B31.對任意的實(shí)數(shù)k,直線y=kx+1與圓x2+y2=2

的位置關(guān)系一定是()

A.相離

B.相切

C.相交但直線不過圓心

D.相交且直線過圓心答案:C32.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(diǎn)(2,4),則f(x)=______,g(x)=______.答案:設(shè)f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個(gè)解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x233.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點(diǎn),已知燈口直徑是60

cm,燈深40

cm,則光源到反射鏡頂點(diǎn)的距離是

______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(diǎn)(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點(diǎn)的距離為458cm.34.

若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()

A.2

B.4

C.2或5

D.4或5答案:C35.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個(gè)位置取一件檢驗(yàn),則這種抽樣方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機(jī)確定起點(diǎn),每隔一定的間隔抽取一個(gè)單位的一種抽樣方式.故選B.36.設(shè)A、B為兩個(gè)事件,若事件A和B同時(shí)發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為______.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3537.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于(

A.2

B.1

C.0

D.-1答案:D38.圓x2+y2=1在矩陣10012對應(yīng)的變換作用下的結(jié)果為______.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣A=10012對應(yīng)變換作用下新曲線上的對應(yīng)點(diǎn),則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.39.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點(diǎn)M,則∠AMB≥90°的概率為______.答案:過A點(diǎn)做BC的垂線,垂足為M',當(dāng)M點(diǎn)落在線段BM'(含M'點(diǎn)不含B點(diǎn))上時(shí)∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1440.根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果a為______.答案:由題設(shè)循環(huán)體要執(zhí)行3次,圖知第一次循環(huán)結(jié)束后c=a+b=2,a=1.b=2,第二次循環(huán)結(jié)束后c=a+b=3,a=2.b=3,第三次循環(huán)結(jié)束后c=a+b=5,a=3.b=5,第四次循環(huán)結(jié)束后不滿足循環(huán)的條件是b<4,程序輸出的結(jié)果為3故為:3.41.已知離心率為63的橢圓C:x2a

2+y2b2=1(a>b>0)經(jīng)過點(diǎn)P(3,1).

(1)求橢圓C的方程;

(2)過左焦點(diǎn)F1且不與x軸垂直的直線l交橢圓C于M、N兩點(diǎn),若OM?ON=463tan∠MON(O為坐標(biāo)原點(diǎn)),求直線l的方程.答案:(1)依題意,離心率為63的橢圓C:x2a

2+y2b2=1(a>b>0)經(jīng)過點(diǎn)P(3,1).∴3a

2+1b2=1,且e2=c2a2=a2-b2a2=23解得:a2=6,b2=2故橢圓方程為x26+y22=1…(4分)(2)橢圓的左焦點(diǎn)為F1(-2,0),則直線l的方程可設(shè)為y=k(x+2)代入橢圓方程得:(3k2+1)x2+12k2x+12k2-6=0設(shè)M(x1,y1),N(x2,y2),∴x1+x2=-12k23k2+1,x1?x2=12k2-63k2+1…(6分)由OM?ON=463tan∠MON得:|OM|?|ON|sin∠MON=436,∴S△OMN=236…(9分)又|MN|=1+k2|x1-x2|=26(1+k2)3k2+1,原點(diǎn)O到l的距離d=|2k|1+k2,則S△OMN=12|MN|d=6(1+k2)3k2+1?|2k|1+k2=236解得k=±33∴l(xiāng)的方程是y=±33(x+2)…(13分)(用其他方法解答參照給分)42.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,∴EF是梯形的中位線,設(shè)兩個(gè)梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:543.已知圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.

(1)將極坐標(biāo)方程化為普通方程;

(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圓的參數(shù)方程為x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.44.如圖給出的是計(jì)算1+13+15+…+12013的值的一個(gè)程序框圖,圖中空白執(zhí)行框內(nèi)應(yīng)填入i=______.答案:∵該程序的功能是計(jì)算1+13+15+…+12013的值,最后一次進(jìn)入循環(huán)的終值為2013,即小于等于2013的數(shù)滿足循環(huán)條件,大于2013的數(shù)不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應(yīng)該填的語句是:i=i+2.故為:i+2.45.讀下面的程序:

上面的程序在執(zhí)行時(shí)如果輸入6,那么輸出的結(jié)果為()

A.6

B.720

C.120

D.1答案:B46.設(shè)全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.47.一個(gè)容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關(guān)系得到,40n=0.125,∴n=320.故選B.48.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題中正確的是()

A.若m∥n,m∥α,則n∥α

B.若α⊥β,m∥α,則m⊥β

C.若α⊥β,m⊥β,則m∥α

D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D49.直線過原點(diǎn)且傾角的正弦值是45,則直線方程為______.答案:因?yàn)閮A斜角α的范圍是:0≤α<π,又由題意:sinα=45所以:tanα=±43x直線過原點(diǎn),由直線的點(diǎn)斜式方程得到:y=±43x故為:y=±43x50.若=(2,0),那么=(

A.(1,2)

B.3

C.2

D.1答案:C第3卷一.綜合題(共50題)1.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C2.設(shè)曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關(guān)于點(diǎn)A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點(diǎn),設(shè)是關(guān)于點(diǎn)A的對稱點(diǎn),則有,,代入曲線C的方程,得關(guān)于的方程,即可知點(diǎn)在曲線C1上.反過來,同樣可以證明,在曲線C1上的點(diǎn)關(guān)于點(diǎn)A的對稱點(diǎn)在曲線C上,因此,曲線C與C1關(guān)于點(diǎn)A對稱.3.雙曲線的實(shí)軸長和焦距分別為()

A.

B.

C.

D.答案:C4.拋物線y2=4x上一點(diǎn)M與該拋物線的焦點(diǎn)F的距離|MF|=4,則點(diǎn)M的橫坐標(biāo)x=______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離是相等的,∴|MF|=4=x+p2=4,∴x=3,故為:3.5.已知向量a=(1,1)與b=(2,3),用坐標(biāo)表示2a+b為______.答案:根據(jù)題意,a=(1,1)與b=(2,3),則2a+b=2(1,1)+(2,3)=(4,5);故為(4,5).6.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設(shè)與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.7.已知x∈{1,2,x2},則實(shí)數(shù)x=______.答案:∵x∈{1,2,x2},分情況討論可得:①x=1此時(shí)集合為{1,2,1}不合題意②x=2此時(shí)集合為{1,2,4}合題意③x=x2解得x=0或x=1當(dāng)x=0時(shí)集合為{1,2,0}合題意故為0或2.8.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()

A.若2x+1是整數(shù),則x∈Z

B.若2x+1是奇數(shù),則x∈Z

C.若2x+1是偶數(shù),則x∈Z

D.若2x+1能被3整除,則x∈Z

E.若2x+1是整數(shù),則x∈Z答案:A9.已知A(4,1,9),B(10,-1,6),則A,B兩點(diǎn)間距離為______.答案:∵A(4,1,9),B(10,-1,6),∴A,B兩點(diǎn)間距離為|AB|=(10-4)2+(-1-1)2+(6-9)2=7故為:710.設(shè)x,y,z∈R,且滿足:x2+y2+z2=1,x+2y+3z=14,則x+y+z=______.答案:根據(jù)柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)當(dāng)且僅當(dāng)x1=y2=z3時(shí),上式的等號成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,結(jié)合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故為:314711.方程x2+ky2=2表示焦點(diǎn)在y軸的橢圓,那么實(shí)數(shù)k的取值范圍是

______.答案:橢圓方程化為x22+y22k=1.焦點(diǎn)在y軸上,則2k>2,即k<1.又k>0,∴0<k<1.故為:0<k<112.某校為了研究學(xué)生的性別和對待某一活動的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則所得到的統(tǒng)計(jì)學(xué)結(jié)論是:有()的把握認(rèn)為“學(xué)生性別與支持該活動有關(guān)系”.

P(k2≥k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

A.0.1%

B.1%

C.99%

D.99.9%答案:C13.拋物線x2+y=0的焦點(diǎn)位于()

A.y軸的負(fù)半軸上

B.y軸的正半軸上

C.x軸的負(fù)半軸上

D.x軸的正半軸上答案:A14.下列表述正確的是()

①歸納推理是由部分到整體的推理;

②歸納推理是由一般到一般的推理;

③演繹推理是由一般到特殊的推理;

④類比推理是由特殊到一般的推理;

⑤類比推理是由特殊到特殊的推理.

A.①②③

B.②③④

C.②④⑤

D.①③⑤答案:D15.某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為()

A.35

B.25

C.15

D.7答案:C16.已知P是以F1,F(xiàn)2為焦點(diǎn)的橢圓(a>b>0)上的一點(diǎn),若PF1⊥PF2,tan∠PF1F2=,則此橢圓的離心率為()

A.

B.

C.

D.答案:D17.從裝有2個(gè)紅球和2個(gè)黒球的口袋內(nèi)任取2個(gè)球,那么互斥而不對立的兩個(gè)事件是()

A.至少有一個(gè)黒球與都是紅球

B.至少有一個(gè)黒球與都是黒球

C.至少有一個(gè)黒球與至少有1個(gè)紅球

D.恰有1個(gè)黒球與恰有2個(gè)黒球答案:D18.當(dāng)太陽光線與水平面的傾斜角為60°時(shí),要使一根長為2m的細(xì)桿的影子最長,則細(xì)桿與水平地面所成的角為()

A.15°

B.30°

C.45°

D.60°答案:B19.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設(shè)另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm20.已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的一個(gè)焦點(diǎn)是F2(2,0),且b=3a.

(1)求雙曲線C的方程;

(2)設(shè)經(jīng)過焦點(diǎn)F2的直線l的一個(gè)法向量為(m,1),當(dāng)直線l與雙曲線C的右支相交于A,B不同的兩點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;并證明AB中點(diǎn)M在曲線3(x-1)2-y2=3上.

(3)設(shè)(2)中直線l與雙曲線C的右支相交于A,B兩點(diǎn),問是否存在實(shí)數(shù)m,使得∠AOB為銳角?若存在,請求出m的范圍;若不存在,請說明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴雙曲線為x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1?x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)設(shè)A(x1,y1),B(x2,y2),則x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中點(diǎn)M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3?m4+6m2+9-12m2(m2-3)2=3∴M在曲線3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),設(shè)存在實(shí)數(shù)m,使∠AOB為銳角,則OA?OB>0∴x1x2+y1y2>0因?yàn)閥1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,與m2>3矛盾∴不存在21.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號依次為1到50的袋裝奶粉中抽取5袋進(jìn)行檢驗(yàn),用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號可能是()

A.5,10,15,20,25

B.2,4,8,16,32

C.1,2,3,4,5

D.7,17,27,37,47答案:D22.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:

廣告費(fèi)用x(萬元)

2

3

4

5

銷售額y(萬元)

27

39

48

54

根據(jù)上表可得回歸方程y=bx+a中的b為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為()

A.65.5萬元

B.66.2萬元

C.67.7萬元

D.72.0萬元答案:A23.若x~N(2,σ2),P(0<x<4)=0.8,則P(0<X<2)=______.答案:∵X~N(2,σ2),∴正態(tài)曲線關(guān)于x=2對稱,∵P(0<X<4)=0.8,∴P(0<X<2)=12P(0<X<4)=0.4,故為:0.4.24.在空間直角坐標(biāo)系中,已知A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點(diǎn)間的距離|AB|=______.答案:∵A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.25.已知a、b、c是實(shí)數(shù),且a2+b2+c2=1,求2a+b+2c的最大值.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值為3.26.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因?yàn)橹本€的斜率k和傾斜角θ的關(guān)系是:k=tanθ∴傾斜角為30°時(shí),對應(yīng)的斜率k=tan30°=33故選:C.27.如圖所示的圓盤由八個(gè)全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機(jī)停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉(zhuǎn)動轉(zhuǎn)盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.28.已知圓的方程是(x-2)2+(y-3)2=4,則點(diǎn)P(3,2)滿足()

A.是圓心

B.在圓上

C.在圓內(nèi)

D.在圓外答案:C29.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對其中6題,乙能答對其中8題.若規(guī)定每次考試分別都從這10題中隨機(jī)抽出3題進(jìn)行測試,至少答對2題算合格.

(1)分別求甲、乙兩人考試合格的概率;

(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨(dú)立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.30.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.

①m×m,②m×n,③n×m,④n×n.答案:兩個(gè)矩陣只有當(dāng)前一個(gè)矩陣的列數(shù)與后一個(gè)矩陣的行數(shù)相等時(shí),才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④31.求證:若圓內(nèi)接四邊形的兩條對角線互相垂直,則從對角線交點(diǎn)到一邊中點(diǎn)的線段長等于圓心到該邊對邊的距離.答案:以兩條對角線的交點(diǎn)為原點(diǎn)O、對角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)

設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點(diǎn)E(c2,d2),AB的中點(diǎn)H(-a2,-b2).又圓心G到四個(gè)頂點(diǎn)的距離相等,故圓心G的橫坐標(biāo)等于AC中點(diǎn)的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點(diǎn)的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.32.已知求證:答案:證明見解析解析:證明:33.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時(shí),|ma+nb|的最大值為______.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時(shí),|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.34.如圖是從甲、乙兩個(gè)班級各隨機(jī)選出9名同學(xué)進(jìn)行測驗(yàn)成績的莖葉圖,從圖中看,平均成績較高的是______班.答案:∵莖葉圖的數(shù)據(jù)得到甲同學(xué)成績:46,58,61,64,71,74,75,84,87;莖葉圖的數(shù)據(jù)得到乙同學(xué)成績:57,62,65,75,79,81,84,87,89.∴甲平均成績?yōu)?9;乙平均成績?yōu)?5;故為:乙.35.(文)對于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運(yùn)算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運(yùn)算性質(zhì)一定成立的所有序號是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論