二項式定理(賽課)_第1頁
二項式定理(賽課)_第2頁
二項式定理(賽課)_第3頁
二項式定理(賽課)_第4頁
二項式定理(賽課)_第5頁
已閱讀5頁,還剩34頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

04二月20231.3.1二項式定理【課標(biāo)要求】會證明二項式定理.掌握二項式定理及其展開式的通項公式.能解決與二項展開式有關(guān)的簡單問題.1.2.3.二項式定理的證明.(難點(diǎn))利用通項公式求特定項或其系數(shù).(重點(diǎn))【核心掃描】1.2.微課:一、情景引入展開式中共有

項,合并同類項后是2+1項,且每一項都是的形式情景1:

兩個容器中有紅、藍(lán)玻璃球各一個,每次從2個容器中各取一個球,有什么樣的取法?各種取法有多少種?情景2:數(shù)學(xué)實(shí)驗一、情景引入1.都不取藍(lán)球(全取紅球):兩個容器中有紅、藍(lán)玻璃球各一個,每次從2個容器中各取一個球,有什么樣的取法?各種取法有多少種?二、合作探究2.取1個藍(lán)球(1藍(lán)1紅):兩個容器中有紅、藍(lán)玻璃球各一個,每次從2個容器中各取一個球,有什么樣的取法?各種取法有多少種?二、合作探究3.取2個藍(lán)球(2藍(lán)0紅):兩個容器中有紅、藍(lán)玻璃球各一個,每次從2個容器中各取一個球,有什么樣的取法?各種取法有多少種?二、合作探究

不進(jìn)行多項式運(yùn)算,用組合知識來考察,展開展開式中有哪些項?各項系數(shù)各是什么?問題1:取2個a球(不取b球):

取1個a球(取1b球):

不取a球(取2b):

二、合作探究三、分組探究(用學(xué)具)

類比前面,不進(jìn)行多項式運(yùn)算,用組合知識來考察.(約3分鐘)嘗試二項式定理的發(fā)現(xiàn):嘗試二項式定理的發(fā)現(xiàn):歸納猜想:沒有大膽的猜想,就不能有偉大的發(fā)現(xiàn)和發(fā)明。--牛頓四、獨(dú)立探究(約1-2分鐘)這個公式表示的定理叫做二項式定理,公式右邊的多項式叫做(a+b)n的

,其中(r=0,1,2,……,n)叫做

,

叫做二項展開式的通項,用Tr+1

表示,即:該項是指展開式的第

項,展開式共有_____個項.展開式二項式系數(shù)r+1n+1閱讀教材第30頁探究-例1的上面,然后回答下面問題:(約3分鐘)閱讀教材第30頁探究-例1的上面,然后回答下面問題:(要求獨(dú)立完成,限時3分鐘)二、自主學(xué)習(xí)

在二項展開式中,問題2:二項式系數(shù)是

.問題1.項數(shù)規(guī)律:問題3:尋找規(guī)律:展開式共有

個項n+12.系數(shù)規(guī)律:2.指數(shù)規(guī)律:(1)各項的次數(shù)均為n;即為n次齊次式(2)a的次數(shù)由n逐次降到0,

b的次數(shù)由0逐次升到n.1.項數(shù)規(guī)律:展開式共有n+1個項二項式定理

發(fā)現(xiàn)規(guī)律:特別地:

1、把b用-b代替

(a-b)n=Cnan-Cnan-1b+…+(-1)rCnan-rbr

+…+(-1)nCnbn01rn對定理的再認(rèn)識2、令a=1,b=x嘗試二項式定理的應(yīng)用:例1:解:嘗試二項式定理的應(yīng)用:變式訓(xùn)練:闖關(guān)競技場娛樂互動★★

①項數(shù):共n+1項,是關(guān)于a與b的齊次多項式

②指數(shù):a的指數(shù)從n逐項遞減到0,是降冪排列;

b的指數(shù)從0逐項遞增到n,是升冪排列。-歸納小結(jié):1)注意二項式定理中二項展開式的特征2)掌握用通項公式求二項式系數(shù)及項課后作業(yè):

一、必做題:第36頁習(xí)題1.3第1、2題二、選做題:第36頁習(xí)題1.3第3、4題概念形成創(chuàng)設(shè)情境知識探究探索歸納知識應(yīng)用闖關(guān)競技小結(jié)提升課后作業(yè)

1.3二項式定理布置作業(yè):課本第36頁習(xí)題1.3T1(1)(2)、T2(1)(2)A.必做題B.選做題在的展開式中,若常數(shù)項存在,則n的最小值.課后探究:解:(1)例2.用二項式定理展開下列各式:例3、求(x+a)12的展開式中的倒數(shù)第4項解:二項式定理的應(yīng)用:課堂練習(xí)2.求的展開式的第4項的二項式系數(shù),并求第4項的系數(shù).

解:展開式的第4項的二項式系數(shù)第4項的系數(shù)

試一試問題:(1)今天是星期一,那么7天后的這一天是星期幾呢?(3)如果是

天后的這一天呢?

(2)如果是15天后的這一天呢?(星期二)(星期一)今天是星期一,那么

天后的這一天是星期幾?余數(shù)是1,所以這一天是星期二問題探究:嘗試二項式定理的發(fā)現(xiàn):今天是星期一,那么

天后的這一天是星期幾?余數(shù)是1,所以這一天是星期二問題探究:問題1

4個容器中有紅、藍(lán)玻璃球各一個,每次從4個容器中各取一個球,有什么樣的取法?各種取法有多少種?都不取藍(lán)球(全取紅球):取1個藍(lán)球(1藍(lán)3紅):取2個藍(lán)球(2藍(lán)2紅):取3個藍(lán)球(3藍(lán)1紅):取4個藍(lán)球(無紅球)

不作多項式運(yùn)算,用組合知識來考察,展開展開式中有哪些項?各項系數(shù)各是什么?問題2取4個a球(不取b球)

:取3個a球(取3a1b):取2個a球(取2a2b):取1個a球(取1a3b):不取a球(全取b球):

不作多項式運(yùn)算,用組合知識來考察,展開展開式中有哪些項?各項系數(shù)各是什么?問題2取4個a球(不取b球)

:取3個a球(取3a1b):取2個a球(取2a2b):取1個a球(取1a3b):不取a球(全取b球):情景引入都不取藍(lán)球(全取紅球):取1個藍(lán)球(1藍(lán)1紅):取2個藍(lán)球(2藍(lán)2紅):發(fā)現(xiàn)規(guī)律:對于(a+b)n=的展開式中an-rbr的系數(shù)是在n個括

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論