2022-2023學年山東省淄博市博山區(qū)中考二模數(shù)學試題含解析_第1頁
2022-2023學年山東省淄博市博山區(qū)中考二模數(shù)學試題含解析_第2頁
2022-2023學年山東省淄博市博山區(qū)中考二模數(shù)學試題含解析_第3頁
2022-2023學年山東省淄博市博山區(qū)中考二模數(shù)學試題含解析_第4頁
2022-2023學年山東省淄博市博山區(qū)中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AB是⊙O的直徑,點E為BC的中點,AB=4,∠BED=120°,則圖中陰影部分的面積之和為()A.1 B. C. D.2.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3.下列代數(shù)運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x54.如圖,直線y=kx+b與y=mx+n分別交x軸于點A(﹣1,0),B(4,0),則函數(shù)y=(kx+b)(mx+n)中,則不等式的解集為()A.x>2 B.0<x<4C.﹣1<x<4 D.x<﹣1或x>45.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h.若設原來的平均車速為xkm/h,則根據(jù)題意可列方程為A. B.C. D.6.下列分式中,最簡分式是()A. B. C. D.7.如圖,△ABC繞點A順時針旋轉45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l8.如圖,某小區(qū)計劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5709.如圖,將RtABC繞直角項點C順時針旋轉90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°10.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.11.如圖,半徑為1的圓O1與半徑為3的圓O2相內切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.412.單項式2a3b的次數(shù)是()A.2 B.3 C.4 D.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一組數(shù)據(jù)﹣3、3,﹣2、1、3、0、4、x的平均數(shù)是1,則眾數(shù)是_____.14.分解因:=______________________.15.如果一個三角形兩邊為3cm,7cm,且第三邊為奇數(shù),則三角形的周長是_________.16.如圖,矩形ABCD,AB=2,BC=1,將矩形ABCD繞點A順時針旋轉90°得矩形AEFG,連接CG、EG,則∠CGE=________.17.邊長為6的正六邊形外接圓半徑是_____.18.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(1)計算:sin45°(2)解不等式組:20.(6分)我們來定義一種新運算:對于任意實數(shù)x、y,“※”為a※b=(a+1)(b+1)﹣1.(1)計算(﹣3)※9(2)嘉琪研究運算“※”之后認為它滿足交換律,你認為她的判斷(正確、錯誤)(3)請你幫助嘉琪完成她對運算“※”是否滿足結合律的證明.21.(6分)小強想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測點M處,測得亭A在點M的北偏東30°,亭B在點M的北偏東60°,當小明由點M沿小道I向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續(xù)向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據(jù)以上測量數(shù)據(jù),請你幫助小強計算湖中兩個小亭A、B之間的距離.22.(8分)如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)的圖象于點B,AB=.求反比例函數(shù)的解析式;若P(,)、Q(,)是該反比例函數(shù)圖象上的兩點,且時,,指出點P、Q各位于哪個象限?并簡要說明理由.23.(8分)計算:(-)-2–2()+24.(10分)已知拋物線y=ax2+c(a≠0).(1)若拋物線與x軸交于點B(4,0),且過點P(1,–3),求該拋物線的解析式;(2)若a>0,c=0,OA、OB是過拋物線頂點的兩條互相垂直的直線,與拋物線分別交于A、B兩點,求證:直線AB恒經(jīng)過定點(0,);(3)若a>0,c<0,拋物線與x軸交于A,B兩點(A在B左邊),頂點為C,點P在拋物線上且位于第四象限.直線PA、PB與y軸分別交于M、N兩點.當點P運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.25.(10分)已知正方形ABCD的邊長為2,作正方形AEFG(A,E,F(xiàn),G四個頂點按逆時針方向排列),連接BE、GD,(1)如圖①,當點E在正方形ABCD外時,線段BE與線段DG有何關系?直接寫出結論;(2)如圖②,當點E在線段BD的延長線上,射線BA與線段DG交于點M,且DG=2DM時,求邊AG的長;(3)如圖③,當點E在正方形ABCD的邊CD所在的直線上,直線AB與直線DG交于點M,且DG=4DM時,直接寫出邊AG的長.26.(12分)如圖,△ABC中,AB=AC=4,D、E分別為AB、AC的中點,連接CD,過E作EF∥DC交BC的延長線于F;(1)求證:DE=CF;(2)若∠B=60°,求EF的長.27.(12分)網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關注,有關部門在全國范圍內對12﹣35歲的網(wǎng)癮人群進行了簡單的隨機抽樣調查,繪制出以下兩幅統(tǒng)計圖.請根據(jù)圖中的信息,回答下列問題:(1)這次抽樣調查中共調查了人;(2)請補全條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】連接AE,OD,OE.∵AB是直徑,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等邊三角形.∴∠A=60°.又∵點E為BC的中點,∠AED=90°,∴AB=AC.∴△ABC是等邊三角形,∴△EDC是等邊三角形,且邊長是△ABC邊長的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE圍成的部分的面積=和弦DE圍成的部分的面積.∴陰影部分的面積=.故選C.2、B【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.3、D【解析】

分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【點睛】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關鍵.4、C【解析】

看兩函數(shù)交點坐標之間的圖象所對應的自變量的取值即可.【詳解】∵直線y1=kx+b與直線y2=mx+n分別交x軸于點A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集為﹣1<x<4,故選C.【點睛】本題主要考查一次函數(shù)和一元一次不等式,本題是借助一次函數(shù)的圖象解一元一次不等式,兩個圖象的“交點”是兩個函數(shù)值大小關系的“分界點”,在“分界點”處函數(shù)值的大小發(fā)生了改變.5、A【解析】

直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h,利用時間差值得出等式即可.【詳解】解:設原來的平均車速為xkm/h,則根據(jù)題意可列方程為:﹣=1.故選A.【點睛】本題主要考查了由實際問題抽象出分式方程,根據(jù)題意得出正確等量關系是解題的關鍵.6、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.7、D【解析】∵△ABC繞點A順時針旋轉45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點睛】此題主要考查了旋轉的性質以及等腰直角三角形的性質等知識,得出AD,AF,DC′的長是解題關鍵.8、A【解析】六塊矩形空地正好能拼成一個矩形,設道路的寬為xm,根據(jù)草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.9、B【解析】

根據(jù)圖形旋轉的性質得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉的性質,等腰三角形和直角三角形的性質,掌握等腰三角形和直角三角形的性質定理,是解題的關鍵.10、B【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故錯誤;B、是中心對稱圖形,不是軸對稱圖形,故正確;C、是軸對稱圖形,也是中心對稱圖形,故錯誤;D、是軸對稱圖形,也是中心對稱圖形,故錯誤.故選B.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.11、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.12、C【解析】分析:根據(jù)單項式的性質即可求出答案.詳解:該單項式的次數(shù)為:3+1=4故選C.點睛:本題考查單項式的次數(shù)定義,解題的關鍵是熟練運用單項式的次數(shù)定義,本題屬于基礎題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】∵-3、3,-2、1、3、0、4、x的平均數(shù)是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一組數(shù)據(jù)-3、3,-2、1、3、0、4、2,∴眾數(shù)是3.故答案是:3.14、(x-2y)(x-2y+1)【解析】

根據(jù)所給代數(shù)式第一、二、五項一組,第三、四項一組,分組分解后再提公因式即可分解.【詳解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)15、15cm、17cm、19cm.【解析】試題解析:設三角形的第三邊長為xcm,由題意得:7-3<x<7+3,即4<x<10,則x=5,7,9,三角形的周長:3+7+5=15(cm),3+7+7=17(cm),3+7+9=19(cm).考點:三角形三邊關系.16、45°【解析】試題解析:如圖,連接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案為17、6【解析】

根據(jù)正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,∴邊長為6的正六邊形外接圓半徑是6,故答案為:6.【點睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形是解題的關鍵.18、1.【解析】

∵AB=5,AD=12,∴根據(jù)矩形的性質和勾股定理,得AC=13.∵BO為Rt△ABC斜邊上的中線∴BO=6.5∵O是AC的中點,M是AD的中點,∴OM是△ACD的中位線∴OM=2.5∴四邊形ABOM的周長為:6.5+2.5+6+5=1故答案為1三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)﹣2<x≤1.【解析】

(1)根據(jù)絕對值、特殊角的三角函數(shù)值可以解答本題;(2)根據(jù)解一元一次不等式組的方法可以解答本題.【詳解】(1)sin45°=3-+×-5+×=3-+3-5+1=7--5;(2)(2)由不等式①,得x>-2,由不等式②,得x≤1,故原不等式組的解集是-2<x≤1.【點睛】本題考查解一元一次不等式組、實數(shù)的運算、特殊角的三角函數(shù)值,解答本題的關鍵是明確解它們各自的解答方法.20、(1)-21;(2)正確;(3)運算“※”滿足結合律【解析】

(1)根據(jù)新定義運算法則即可求出答案.(2)只需根據(jù)整式的運算證明法則a※b=b※a即可判斷.(3)只需根據(jù)整式的運算法則證明(a※b)※c=a※(b※c)即可判斷.【詳解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a※b=(a+1)(b+1)-1b※a=(b+1)(a+1)-1,∴a※b=b※a,故滿足交換律,故她判斷正確;(3)由已知把原式化簡得a※b=(a+1)(b+1)-1=ab+a+b∵(a※b)※c=(ab+a+b)※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c∴(a※b)※c=a※(b※c)∴運算“※”滿足結合律【點睛】本題考查新定義運算,解題的關鍵是正確理解新定義運算的法則,本題屬于中等題型.21、1m【解析】

連接AN、BQ,過B作BE⊥AN于點E.在Rt△AMN和在Rt△BMQ中,根據(jù)三角函數(shù)就可以求得AN,BQ,求得NQ,AE的長,在直角△ABE中,依據(jù)勾股定理即可求得AB的長.【詳解】連接AN、BQ,∵點A在點N的正北方向,點B在點Q的正北方向,∴AN⊥l,BQ⊥l,在Rt△AMN中:tan∠AMN=,∴AN=1,在Rt△BMQ中:tan∠BMQ=,∴BQ=30,過B作BE⊥AN于點E,則BE=NQ=30,∴AE=AN-BQ=30,在Rt△ABE中,AB2=AE2+BE2,AB2=(30)2+302,∴AB=1.答:湖中兩個小亭A、B之間的距離為1米.【點睛】本題考查勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.22、(1);(2)P在第二象限,Q在第三象限.【解析】試題分析:(1)求出點B坐標即可解決問題;(2)結論:P在第二象限,Q在第三象限.利用反比例函數(shù)的性質即可解決問題;試題解析:解:(1)由題意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函數(shù)的解析式為.(2)結論:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函數(shù)y在每個象限y隨x的增大而增大,∵P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點,且x1<x2時,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.點睛:此題考查待定系數(shù)法、反比例函數(shù)的性質、坐標與圖形的變化等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.23、0【解析】

本題涉及負指數(shù)冪、二次根式化簡和絕對值3個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果.【詳解】原式.【點睛】本題主要考查負指數(shù)冪、二次根式化簡和絕對值,熟悉掌握是關鍵.24、(1);(2)詳見解析;(3)為定值,=【解析】

(1)把點B(4,0),點P(1,–3)代入y=ax2+c(a≠0),用待定系數(shù)法求解即可;(2)如圖作輔助線AE、BF垂直

x軸,設A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直線AB的解析式即可得到結論;(3)作PQ⊥AB于點Q,設P(m,am2+c)、A(–t,0)、B(t,0),則at2+c=0,c=–at2由PQ∥ON,可得ON=amt+at2,OM=–amt+at2,然后把ON,OM,OC的值代入整理即可.【詳解】(1)把點B(4,0),點P(1,–3)代入y=ax2+c(a≠0),,解之得,∴;(2)如圖作輔助線AE、BF垂直

x軸,設A(m,am2)、B(n,an2),∵OA⊥OB,∴∠AOE=∠OBF,∴△AOE∽△OBF,∴,,,直線AB過點A(m,am2)、點B(n,an2),∴過點(0,);(3)作PQ⊥AB于點Q,設P(m,am2+c)、A(–t,0)、B(t,0),則at2+c=0,c=–at2∵PQ∥ON,∴,ON=====at(m+t)=amt+at2,同理:OM=–amt+at2,所以,OM+ON=2at2=–2c=OC,所以,=.【點睛】本題考查了待定系數(shù)法求函數(shù)解析式,相似三角形的判定與性質,平行線分線段成比例定理.正確作出輔助線是解答本題的關鍵.25、(1)結論:BE=DG,BE⊥DG.理由見解析;(1)AG=1;(3)滿足條件的AG的長為1或1.【解析】

(1)結論:BE=DG,BE⊥DG.只要證明△BAE≌△DAG(SAS),即可解決問題;(1)如圖②中,連接EG,作GH⊥AD交DA的延長線于H.由A,D,E,G四點共圓,推出∠ADO=∠AEG=45°,解直角三角形即可解決問題;(3)分兩種情形分別畫出圖形即可解決問題;【詳解】(1)結論:BE=DG,BE⊥DG.理由:如圖①中,設BE交DG于點K,AE交DG于點O.∵四邊形ABCD,四邊形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∴∠AEB=∠AGD,∵∠AOG=∠EOK,∴∠OAG=∠OKE=90°,∴BE⊥DG.(1)如圖②中,連接EG,作GH⊥AD交DA的延長線于H.∵∠OAG=∠ODE=90°,∴A,D,E,G四點共圓,∴∠ADO=∠AEG=45°,∵∠DAM=90°,∴∠ADM=∠AMD=45°,∴∵DG=1DM,∴∵∠H=90°,∴∠HDG=∠HGD=45°,∴GH=DH=4,∴AH=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論