2022-2023學(xué)年湖北省武漢市江夏區(qū)第六中學(xué)中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2022-2023學(xué)年湖北省武漢市江夏區(qū)第六中學(xué)中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2022-2023學(xué)年湖北省武漢市江夏區(qū)第六中學(xué)中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2022-2023學(xué)年湖北省武漢市江夏區(qū)第六中學(xué)中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2022-2023學(xué)年湖北省武漢市江夏區(qū)第六中學(xué)中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.為迎接中考體育加試,小剛和小亮分別統(tǒng)計了自己最近10次跳繩比賽,下列統(tǒng)計量中能用來比較兩人成績穩(wěn)定程度的是()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差2.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,a,b,c的取值范圍()A.a(chǎn)<0,b<0,c<0B.a(chǎn)<0,b>0,c<0C.a(chǎn)>0,b>0,c<0D.a(chǎn)>0,b<0,c<03.如圖,已知點A(1,0),B(0,2),以AB為邊在第一象限內(nèi)作正方形ABCD,直線CD與y軸交于點G,再以DG為邊在第一象限內(nèi)作正方形DEFG,若反比例函數(shù)的圖像經(jīng)過點E,則k的值是()(A)33(B)34(C)35(D)364.若關(guān)于x的方程=3的解為正數(shù),則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣5.的相反數(shù)是()A. B.2 C. D.6.如圖,⊙O是△ABC的外接圓,∠B=60°,⊙O的半徑為4,則AC的長等于()A.4 B.6 C.2 D.87.在半徑等于5cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°8.如圖,在中,、分別為、邊上的點,,與相交于點,則下列結(jié)論一定正確的是()A. B.C. D.9.一元二次方程x2﹣2x=0的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣210.如圖,數(shù)軸上的三點所表示的數(shù)分別為,其中,如果|那么該數(shù)軸的原點的位置應(yīng)該在()A.點的左邊 B.點與點之間 C.點與點之間 D.點的右邊11.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.12.已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.(11·湖州)如圖,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設(shè)四邊形OMPN的面積為S,P點運動時間為t,則S關(guān)于t的函數(shù)圖象大致為14.已知x1、x2是一元二次方程x2﹣2x﹣1=0的兩實數(shù)根,則1215.如圖,中,,則__________.16.已知關(guān)于x的方程x2+kx﹣3=0的一個根是x=﹣1,則另一根為_____.17.已知a+b=4,a-b=3,則a2-b2=____________.18.已知關(guān)于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,則m=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.(1)求證:AE?FD=AF?EC;(2)求證:FC=FB;(3)若FB=FE=2,求⊙O的半徑r的長.20.(6分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關(guān)系,并說明理由;(2)已知AD=5,CD=4,求BC的長.21.(6分)如圖,已知∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE與BD相交于點O.求證:EC=ED.22.(8分)如圖,在中,,是邊上的高線,平分交于點,經(jīng)過,兩點的交于點,交于點,為的直徑.(1)求證:是的切線;(2)當,時,求的半徑.23.(8分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:四邊形BFDE是平行四邊形.24.(10分)解下列不等式組:25.(10分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m.當半圓D與數(shù)軸相切時,m=.半圓D與數(shù)軸有兩個公共點,設(shè)另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內(nèi)心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.26.(12分)在平面直角坐標系中,二次函數(shù)y=x2+ax+2a+1的圖象經(jīng)過點M(2,-3)。(1)求二次函數(shù)的表達式;(2)若一次函數(shù)y=kx+b(k≠0)的圖象與二次函數(shù)y=x2+ax+2a+1的圖象經(jīng)過x軸上同一點,探究實數(shù)k,b滿足的關(guān)系式;(3)將二次函數(shù)y=x2+ax+2a+1的圖象向右平移2個單位,若點P(x0,m)和Q(2,n)在平移后的圖象上,且m>n,結(jié)合圖象求x0的取值范圍.27.(12分)九(1)班針對“你最喜愛的課外活動項目”對全班學(xué)生進行調(diào)查(每名學(xué)生分別選一個活動項目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.根據(jù)以上信息解決下列問題:,;扇形統(tǒng)計圖中機器人項目所對應(yīng)扇形的圓心角度數(shù)為°;從選航模項目的4名學(xué)生中隨機選取2名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)方差反映數(shù)據(jù)的波動情況即可解答.【詳解】由于方差反映數(shù)據(jù)的波動情況,所以比較兩人成績穩(wěn)定程度的數(shù)據(jù)是方差.故選D.【點睛】本題主要考查了統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.2、D【解析】試題分析:根據(jù)二次函數(shù)的圖象依次分析各項即可。由拋物線開口向上,可得,再由對稱軸是,可得,由圖象與y軸的交點再x軸下方,可得,故選D.考點:本題考查的是二次函數(shù)的性質(zhì)點評:解答本題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì):的正負決定拋物線開口方向,對稱軸是,C的正負決定與Y軸的交點位置。3、D【解析】試題分析:過點E作EM⊥OA,垂足為M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;故選D.考點:反比例函數(shù)綜合題.4、B【解析】

解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關(guān)于x的方程=3的解為正數(shù),所以﹣2m+9>0,解得m<,當x=3時,x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.5、B【解析】

根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.6、A【解析】

解:連接OA,OC,過點O作OD⊥AC于點D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故選A.【點睛】本題考查三角形的外接圓;勾股定理;圓周角定理;垂徑定理.7、C【解析】

根據(jù)題意畫出相應(yīng)的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內(nèi)接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,以及銳角三角函數(shù)定義,熟練掌握垂徑定理是解本題的關(guān)鍵.8、A【解析】

根據(jù)平行線分線段成比例定理逐項分析即可.【詳解】A.∵,∴,,∴,故A正確;B.∵,∴,故B不正確;C.∵,∴,故C不正確;D.∵,∴,故D不正確;故選A.【點睛】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應(yīng)線段的長度成比例.推論:平行于三角形一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.9、C【解析】

方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.【詳解】方程變形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故選C.【點睛】考查了解一元二次方程﹣因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.10、C【解析】

根據(jù)絕對值是數(shù)軸上表示數(shù)的點到原點的距離,分別判斷出點A、B、C到原點的距離的大小,從而得到原點的位置,即可得解.【詳解】∵|a|>|c|>|b|,

∴點A到原點的距離最大,點C其次,點B最小,

又∵AB=BC,

∴原點O的位置是在點B、C之間且靠近點B的地方.

故選:C.【點睛】此題考查了實數(shù)與數(shù)軸,理解絕對值的定義是解題的關(guān)鍵.11、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.12、D【解析】

此題運用圓錐的性質(zhì),同時此題為數(shù)學(xué)知識的應(yīng)用,由題意蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短,就用到兩點間線段最短定理.【詳解】解:蝸牛繞圓錐側(cè)面爬行的最短路線應(yīng)該是一條線段,因此選項A和B錯誤,又因為蝸牛從p點出發(fā),繞圓錐側(cè)面爬行后,又回到起始點P處,那么如果將選項C、D的圓錐側(cè)面展開圖還原成圓錐后,位于母線OM上的點P應(yīng)該能夠與母線OM′上的點(P′)重合,而選項C還原后兩個點不能夠重合.故選D.點評:本題考核立意相對較新,考核了學(xué)生的空間想象能力.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、A【解析】試題分析:①當點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數(shù),開口向上;②當點P在AB上運動時,設(shè)P點坐標為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數(shù)綜合題;2.動點問題的函數(shù)圖象.14、6【解析】

已知x1,x2是一元二次方程x2﹣2x﹣1=0的兩實數(shù)根,根據(jù)方程解的定義及根與系數(shù)的關(guān)系可得x12﹣2x1﹣1=0,x22﹣2x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2x1+1,x22=2x2+1,代入所給的代數(shù)式,再利用完全平方公式變形,整體代入求值即可.【詳解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的兩實數(shù)根,∴x12﹣2x1﹣1=0,x22﹣2x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2x1+1,x22=2x2+1,∴12x1故答案為6.【點睛】本題考查了一元二次方程解的定義及根與系數(shù)的關(guān)系,會熟練運用整體思想是解決本題的關(guān)鍵.15、17【解析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案為17.16、1【解析】

設(shè)另一根為x2,根據(jù)一元二次方程根與系數(shù)的關(guān)系得出-1?x2=-1,即可求出答案.【詳解】設(shè)方程的另一個根為x2,則-1×x2=-1,解得:x2=1,故答案為1.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,那么x1+x2=-,x1x2=.17、1.【解析】

a2-b2=(a+b)(a-b)=4×3=1.故答案為:1.考點:平方差公式.18、1【解析】【分析】根據(jù)一元二次方程的定義以及一元二次方程的解的定義列出關(guān)于m的方程,通過解關(guān)于m的方程求得m的值即可.【詳解】∵關(guān)于x的一元二次方程mx1+5x+m1﹣1m=0有一個根為0,∴m1﹣1m=0且m≠0,解得,m=1,故答案是:1.【點睛】本題考查了一元二次方程ax1+bx+c=0(a≠0)的解的定義.解答該題時需注意二次項系數(shù)a≠0這一條件.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)詳見解析;(3)2.【解析】(1)由BD是⊙O的切線得出∠DBA=90°,推出CH∥BD,證△AEC∽△AFD,得出比例式即可.(2)證△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根據(jù)直角三角形斜邊上中線性質(zhì)得出CF=DF=BF即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,連接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切線,由切割線定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,從而由勾股定理求得AB=BG的長,從而得到⊙O的半徑r.20、(1)BC與⊙O相切;理由見解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點:1.切線的判定與性質(zhì);2.相似三角形的判定與性質(zhì);3.勾股定理.21、見解析【解析】

由∠1=∠2,可得∠BED=∠AEC,根據(jù)利用ASA可判定△BED≌△AEC,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED=EC.【點睛】本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對應(yīng)邊相等、對應(yīng)角相等)是解題的關(guān)鍵.22、(1)見解析;(2)的半徑是.【解析】

(1)連結(jié),易證,由于是邊上的高線,從而可知,所以是的切線.(2)由于,從而可知,由,可知:,易證,所以,再證明,所以,從而可求出.【詳解】解:(1)連結(jié).∵平分,∴,又,∴,∴,∵是邊上的高線,∴,∴,∴是的切線.(2)∵,∴,,∴是中點,∴,∵,∴,∵,,∴,∴,又∵,∴,在中,,∴,∴,,而,∴,∴,∴的半徑是.【點睛】本題考查圓的綜合問題,涉及銳角三角函數(shù),相似三角形的判定與性質(zhì),等腰三角形的性質(zhì)等知識,綜合程度較高,需要學(xué)生綜合運用知識的能力.23、證明見解析【解析】

∵四邊形ABCD是平行四邊形,∴AD//BC,AD=BC,∵AE=CF∴AD-AE=BC-CF即DE=BF∴四邊形BFDE是平行四邊形.24、﹣2≤x<.【解析】

先分別求出兩個不等式的解集,再求其公共解.【詳解】,解不等式①得,x<,解不等式②得,x≥﹣2,則不等式組的解集是﹣2≤x<.【點睛】本題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).25、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】

(1)根據(jù)題意由勾股定理即可解答(2)①根據(jù)題意可知半圓D與數(shù)軸相切時,只有一個公共點,和當O、A、B三點在數(shù)軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據(jù)題意如圖1,當OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,列出方程求解即可解答如圖2,當OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,列出方程求解即可解答【詳解】(1)當半圓與數(shù)軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)軸相切時,只有一個公共點,此時m=,當O、A、B三點在數(shù)軸上時,m=7+4=11,∴半圓D與數(shù)軸有兩個公共點時,m的取值范圍為.故答案為.②如圖,連接DC,當BC=2時,∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論