江蘇省南京十校下學(xué)期2021-2022學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷含解析_第1頁(yè)
江蘇省南京十校下學(xué)期2021-2022學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷含解析_第2頁(yè)
江蘇省南京十校下學(xué)期2021-2022學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷含解析_第3頁(yè)
江蘇省南京十校下學(xué)期2021-2022學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷含解析_第4頁(yè)
江蘇省南京十校下學(xué)期2021-2022學(xué)年高考?jí)狠S卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,且在上是單調(diào)函數(shù),則下列說(shuō)法正確的是()A. B.C.函數(shù)在上單調(diào)遞減 D.函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱(chēng)2.函數(shù)的一個(gè)單調(diào)遞增區(qū)間是()A. B. C. D.3.直線(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn)且與拋物線(xiàn)交于A(yíng),B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.74.的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角()A. B. C. D.5.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線(xiàn)性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.56.甲乙兩人有三個(gè)不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為()A.B.C.D.7.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開(kāi)始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開(kāi)始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米8.定義在R上的函數(shù)y=fx滿(mǎn)足fx≤2x-1A. B. C. D.9.已知(為虛數(shù)單位,為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在().A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知為圓的一條直徑,點(diǎn)的坐標(biāo)滿(mǎn)足不等式組則的取值范圍為()A. B.C. D.11.函數(shù)(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,12.已知雙曲線(xiàn)的一條漸近線(xiàn)經(jīng)過(guò)圓的圓心,則雙曲線(xiàn)的離心率為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)恰好有3個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)___14.若函數(shù)為奇函數(shù),則_______.15.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____16.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績(jī)的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來(lái)的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)數(shù)列的前項(xiàng)和為,且.數(shù)列滿(mǎn)足,其前項(xiàng)和為.(1)求數(shù)列與的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)在平面直角坐標(biāo)系xOy中,曲線(xiàn)l的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為4sin.(1)求曲線(xiàn)C的普通方程;(2)求曲線(xiàn)l和曲線(xiàn)C的公共點(diǎn)的極坐標(biāo).19.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線(xiàn)與平面所成角的正弦值.20.(12分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系;曲線(xiàn)C1的普通方程為(x-1)2+y2=1,曲線(xiàn)C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線(xiàn)C1和C2的極坐標(biāo)方程:(Ⅱ)設(shè)射線(xiàn)θ=(ρ>0)分別與曲線(xiàn)C1和C2相交于A(yíng),B兩點(diǎn),求|AB|的值.21.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點(diǎn)在線(xiàn)段上,且平面,,,求二面角的余弦值.22.(10分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;(2)若函數(shù)的兩個(gè)極值點(diǎn)為,,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)函數(shù),在上是單調(diào)函數(shù),確定,然后一一驗(yàn)證,A.若,則,由,得,但.B.由,,確定,再求解驗(yàn)證.C.利用整體法根據(jù)正弦函數(shù)的單調(diào)性判斷.D.計(jì)算是否為0.【詳解】因?yàn)楹瘮?shù),在上是單調(diào)函數(shù),所以,即,所以,若,則,又因?yàn)椋?,解得,而,故A錯(cuò)誤.由,不妨令,得由,得或當(dāng)時(shí),,不合題意.當(dāng)時(shí),,此時(shí)所以,故B正確.因?yàn)椋瘮?shù),在上是單調(diào)遞增,故C錯(cuò)誤.,故D錯(cuò)誤.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用,還考查了運(yùn)算求解的能力,屬于較難的題.2.D【解析】

利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡(jiǎn)表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時(shí),D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D【點(diǎn)睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).3.B【解析】

根據(jù)拋物線(xiàn)中過(guò)焦點(diǎn)的兩段線(xiàn)段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線(xiàn)標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn),由過(guò)拋物線(xiàn)焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€(xiàn)段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線(xiàn)的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題.4.C【解析】

由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點(diǎn)睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.5.D【解析】

利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點(diǎn)睛】本題考查了線(xiàn)性回歸方程過(guò)樣本中心點(diǎn)的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.6.A【解析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.7.D【解析】

根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.8.D【解析】

根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對(duì)稱(chēng),排除AB,計(jì)算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點(diǎn)睛】本題考查了函數(shù)圖像的識(shí)別,確定函數(shù)關(guān)于1,0中心對(duì)稱(chēng)是解題的關(guān)鍵.9.D【解析】

設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識(shí),考查學(xué)生的基本計(jì)算能力,是一道容易題.10.D【解析】

首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點(diǎn)與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過(guò)作直線(xiàn)的垂線(xiàn),垂足為B,顯然,又易得,所以,,故.故選:D.【點(diǎn)睛】本題考查與線(xiàn)性規(guī)劃相關(guān)的取值范圍問(wèn)題,涉及到向量的線(xiàn)性運(yùn)算、數(shù)量積、點(diǎn)到直線(xiàn)的距離等知識(shí),考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.11.D【解析】

由題意結(jié)合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過(guò)點(diǎn),求出,即可求得答案【詳解】由函數(shù)圖象可知:,函數(shù)的圖象過(guò)點(diǎn),,則故選【點(diǎn)睛】本題主要考查的是的圖像的運(yùn)用,在解答此類(lèi)題目時(shí)一定要挖掘圖像中的條件,計(jì)算三角函數(shù)的周期、最值,代入已知點(diǎn)坐標(biāo)求出結(jié)果12.B【解析】

求出圓心,代入漸近線(xiàn)方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線(xiàn),故選:B【點(diǎn)睛】利用的關(guān)系求雙曲線(xiàn)的離心率,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,然后轉(zhuǎn)化成求函數(shù)值域即可.【詳解】解:恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,令,,在遞增;,遞減,遞增,時(shí),在有一個(gè)零點(diǎn),在有2個(gè)零點(diǎn);故答案為:.【點(diǎn)睛】已知函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍是重點(diǎn)也是難點(diǎn),這類(lèi)題一般用分離參數(shù)的方法,中檔題.14.-2【解析】

由是定義在上的奇函數(shù),可知對(duì)任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域?yàn)?,是奇函數(shù),則,即對(duì)任意的,都成立,故,整理得,解得.故答案為:.【點(diǎn)睛】本題考查奇函數(shù)性質(zhì)的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.15.80211【解析】

由,利用二項(xiàng)式定理即可得,分別令、后,作差即可得.【詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,屬于中檔題.16.1【解析】

根據(jù)均值的定義計(jì)算.【詳解】由題意,∴.故答案為:1.【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),;(2).【解析】

(1)令可求得的值,令,由得出,兩式相減可推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式,再利用對(duì)數(shù)的運(yùn)算性質(zhì)可得出數(shù)列的通項(xiàng)公式;(2)運(yùn)用等差數(shù)列的求和公式,運(yùn)用數(shù)列的分組求和和裂項(xiàng)相消求和,化簡(jiǎn)可得.【詳解】(1)當(dāng)時(shí),,所以;當(dāng)時(shí),,得,即,所以,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,.;(2)由(1)知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,.,.所以.【點(diǎn)睛】本題考查數(shù)列的遞推式的運(yùn)用,注意結(jié)合等比數(shù)列的定義和通項(xiàng)公式,考查數(shù)列的求和方法:分組求和法和裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.18.(1)(2)(2,).【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式求解.(2)先把兩個(gè)方程均化為普通方程,求解公共點(diǎn)的直角坐標(biāo),然后化為極坐標(biāo)即可.【詳解】(1)∵曲線(xiàn)C的極坐標(biāo)方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(diǎn)(,3),化為極坐標(biāo)(2,).【點(diǎn)睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及交點(diǎn)的求解,熟記極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式是求解的關(guān)鍵,交點(diǎn)問(wèn)題一般是統(tǒng)一一種坐標(biāo)形式求解后再進(jìn)行轉(zhuǎn)化,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).19.(1)見(jiàn)證明;(2)【解析】

(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線(xiàn)與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過(guò)點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線(xiàn)與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線(xiàn)面垂直,線(xiàn)線(xiàn)垂直,利用空間直角坐標(biāo)系解決線(xiàn)面夾角問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.20.(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)根據(jù),可得曲線(xiàn)C1的極坐標(biāo)方程,然后先計(jì)算曲線(xiàn)C2的普通方程,最后根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式,可得結(jié)果.(Ⅱ)將射線(xiàn)θ=分別與曲線(xiàn)C1和C2極坐標(biāo)方程聯(lián)立,可得A,B的極坐標(biāo),然后簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】(Ⅰ)由所以曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的普通方程為則曲線(xiàn)的極坐標(biāo)方程為(Ⅱ)令,則,,則,即,所以,,故.【點(diǎn)睛】本題考查極坐標(biāo)方程和參數(shù)方程與直角坐標(biāo)方程的轉(zhuǎn)化,以及極坐標(biāo)方程中的幾何意義,屬基礎(chǔ)題.21.(Ⅰ)見(jiàn)解析(Ⅱ)【解析】

(Ⅰ)推導(dǎo)出BC⊥CE,從而EC⊥平面ABCD,進(jìn)而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而B(niǎo)D⊥AC,進(jìn)而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設(shè)AC與BD的交點(diǎn)為G,推導(dǎo)出EC//FG,取BC的中點(diǎn)為O,連結(jié)OD,則OD⊥BC,以O(shè)為坐標(biāo)原點(diǎn),以過(guò)點(diǎn)O且與CE平行的直線(xiàn)為x軸,以BC為y軸,OD為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因?yàn)槠矫嫫矫?,所以平面,所以,因?yàn)?,所以平面,所以,因?yàn)樗倪呅问瞧叫兴倪呅?,所以四邊形是菱形,故;解法一:(Ⅱ)設(shè)與的交點(diǎn)為,因?yàn)槠矫?,平面平面于,所以,因?yàn)槭侵悬c(diǎn),所以是的中點(diǎn),因?yàn)?,取的中點(diǎn)為,連接,則,因?yàn)槠矫嫫矫?,所以面,以為坐?biāo)原點(diǎn),以過(guò)點(diǎn)且與平行的直線(xiàn)為軸,以所在直線(xiàn)為軸,以所在直線(xiàn)為軸建立空間直角坐標(biāo)系.不妨設(shè),則,,,,,,,設(shè)平面的法向量,則,取,同理可得平面的法向量,設(shè)平面與平面的夾角為,因?yàn)椋远娼堑挠嘞抑禐?解法二:(Ⅱ)設(shè)與的交點(diǎn)為,因?yàn)槠矫妫矫嫫矫嬗?,所以,因?yàn)槭侵悬c(diǎn),所以是的中點(diǎn),因?yàn)?,,所以平面,所以,取中點(diǎn),連接、,因?yàn)椋?,故平面,所以,即是二面角的平面角,不妨設(shè),因?yàn)?,,在中,,所以,所以二面角的余弦值?【點(diǎn)睛】本題考查求空間角中的二面角的余弦值,還考查由空間中線(xiàn)面關(guān)系進(jìn)而證明線(xiàn)線(xiàn)相等,屬于中檔題.22.(1)(2)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論