![冪函數(shù)第二部分3_第1頁](http://file4.renrendoc.com/view/6e4370b8534fdf5239068cff00adb267/6e4370b8534fdf5239068cff00adb2671.gif)
![冪函數(shù)第二部分3_第2頁](http://file4.renrendoc.com/view/6e4370b8534fdf5239068cff00adb267/6e4370b8534fdf5239068cff00adb2672.gif)
![冪函數(shù)第二部分3_第3頁](http://file4.renrendoc.com/view/6e4370b8534fdf5239068cff00adb267/6e4370b8534fdf5239068cff00adb2673.gif)
![冪函數(shù)第二部分3_第4頁](http://file4.renrendoc.com/view/6e4370b8534fdf5239068cff00adb267/6e4370b8534fdf5239068cff00adb2674.gif)
![冪函數(shù)第二部分3_第5頁](http://file4.renrendoc.com/view/6e4370b8534fdf5239068cff00adb267/6e4370b8534fdf5239068cff00adb2675.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
試卷第=page66頁,共=sectionpages66頁試卷第=page55頁,共=sectionpages66頁冪函數(shù)第二部分一、單選題1.(2021·上?!とA東師范大學(xué)第三附屬中學(xué)高一期中)設(shè)和是兩個不同的冪函數(shù),則它們圖像交點(diǎn)的個數(shù)為(
)A.1或2或0 B.1或2或3 C.1或2或3或4 D.0或1或2或32.(2021·上海市第二中學(xué)高一期中)設(shè),若,均有成立,則k的取值個數(shù)是(
)個.A.4 B.3 C.2 D.13.(2021·上?!じ咭粚n}練習(xí))已知實數(shù)a,b,c滿足,,,則a,b,c的大小關(guān)系是(
)A. B.C. D.4.(2020·上?!じ咭粚n}練習(xí))下列命題中正確的是(
)A.當(dāng)m=0時,函數(shù)的圖象是一條直線B.冪函數(shù)的圖象都經(jīng)過(0,0),(1,1)兩點(diǎn)C.冪函數(shù)圖象不可能在第四象限內(nèi)D.若冪函數(shù)為奇函數(shù),則是定義域內(nèi)的增函數(shù)5.(2020·上海市嘉定區(qū)第二中學(xué)高一階段練習(xí))已知.若冪函數(shù)為奇函數(shù),且在上遞減,則(
)A. B.1 C.2 D.36.(2020·上海市洋涇中學(xué)高一期末)現(xiàn)有下列四個結(jié)論中,其中正確結(jié)論的個數(shù)是(
)①冪函數(shù)的圖象與函數(shù)的圖象至少有兩個交點(diǎn);②函數(shù)(k為常數(shù))的圖象可由函數(shù)的圖象經(jīng)過平移得到;③函數(shù)是偶函數(shù);④函數(shù)無最大值,也無最小值;A.1個 B.2個 C.3個 D.4個7.(2022·上海·高三專題練習(xí))已知,為個不同的冪函數(shù),有下列命題:①函數(shù)必過定點(diǎn);②函數(shù)可能過點(diǎn);③若,則函數(shù)為偶函數(shù);④對于任意的一組數(shù)、、…、,一定存在各不相同的個數(shù)、、…、使得在上為增函數(shù).其中真命題的個數(shù)為A.1個 B.2個 C.3個 D.4個8.(2022·上?!じ呷龑n}練習(xí))已知,則函數(shù)(R)與(R)圖像的交點(diǎn)不可能A.只有 B.在直線上 C.多于三個 D.在第二象限9.(2021·上海市進(jìn)才中學(xué)高一階段練習(xí))已知,若為奇函數(shù),且在上單調(diào)遞增,則實數(shù)的值是A. B. C. D.二、填空題10.(2022·上?!じ咭粏卧獪y試)若,則實數(shù)的取值范圍為_________.11.(2021·上海市上南中學(xué)高三階段練習(xí))已知函數(shù)的圖像與坐標(biāo)軸沒有公共點(diǎn),且關(guān)于y軸對稱,則函數(shù)的解析式為___________.12.(2021·上海·高一專題練習(xí))已知冪函數(shù)的圖象關(guān)于原點(diǎn)對稱,則滿足成立的實數(shù)a的取值范圍為___________.13.(2021·上海奉賢區(qū)致遠(yuǎn)高級中學(xué)高三階段練習(xí))函數(shù),若,則實數(shù)的范圍是____________.14.(2020·上?!じ咭粚n}練習(xí))直線與函數(shù)且的圖像有兩個公共點(diǎn),則的取值范圍是________15.(2020·上海市控江中學(xué)高一期中)已知冪函數(shù)①,②,③,④,其中圖像關(guān)于軸對稱的是__________(填寫全部正確的編號)16.(2022·上海·高三專題練習(xí))設(shè),若,且,則取值的集合是___________.17.(2019·上海市金山中學(xué)高一階段練習(xí))冪函數(shù)、的圖象分別經(jīng)過點(diǎn)和,則不等式的解集為____________.18.(2023·上?!じ呷龑n}練習(xí))若,且函數(shù)與的圖象恰有兩個交點(diǎn),則滿足條件的不同集合有________個19.(2022·上?!じ呷龑n}練習(xí))已知.若函數(shù)在上遞減且為偶函數(shù),則________.20.(2020·上?!?fù)旦附中高一期末)冪函數(shù)為偶函數(shù),且在上是減函數(shù),則____.21.(2021·上?!じ咭粚n}練習(xí))冪函數(shù)的圖象過點(diǎn),則函數(shù)的圖象經(jīng)過定點(diǎn)__________.22.(2019·上海市七寶中學(xué)高一階段練習(xí))已知函數(shù)是定義在上的冪函數(shù),則的解集為___________.三、解答題23.(2022·上海市川沙中學(xué)高二開學(xué)考試)已知冪函數(shù)為偶函數(shù),.(1)求的解析式;(2)判斷函數(shù)的奇偶性,并說明理由;(3)若函數(shù)在上是嚴(yán)格增函數(shù),求k的取值范圍.24.(2022·上海·高一單元測試)已知冪函數(shù)的圖象關(guān)于軸對稱,且在區(qū)間上是嚴(yán)格增函數(shù).(1)求的值;(2)求滿足不等式的實數(shù)的取值范圍.25.(2022·上海師大附中高三階段練習(xí))已知冪函數(shù)在上單調(diào)遞減.(1)求的值并寫出的解析式;(2)試判斷是否存在,使得函數(shù)在上的值域為?若存在,求出的值;若不存在,請說明理由.26.(2021·上?!じ咭粚n}練習(xí))比例下列各組數(shù)的大小.(1)和;(2)(–2)–3和(–2.5)–3;(3)(1.1)–0.1和(1.2)–0.1;(4)和.27.(2020·上?!じ咭粚n}練習(xí))若,試求實數(shù)m的取值范圍.28.(2020·上?!じ咭粚n}練習(xí))冪函數(shù)是偶函數(shù),且在上為增函數(shù),求函數(shù)解析式.29.(2021·上海市第二中學(xué)高一期末)已知冪函數(shù)()在是嚴(yán)格減函數(shù),且為偶函數(shù).(1)求的解析式;(2)討論函數(shù)的奇偶性,并說明理由.30.(2023·上海·高三專題練習(xí))已知函數(shù)(1)若a=1,x[0,1],求f(x)的值域;(2)當(dāng)時,求f(x)的最小值h(a);(3)是否存在實數(shù)m,n,同時滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域為[m,n]時,其值域為[m2,n2].若存在,求出m,n的值;若不存在,請說明理由.31.(2021·上?!じ咭粚n}練習(xí))試?yán)煤瘮?shù)的性質(zhì),比較的大?。?32.(2020·上?!じ咭粚n}練習(xí))下面六個冪函數(shù)的圖象如圖所示,試建立函數(shù)與圖象之間的對應(yīng)關(guān)系.(1);(2);(3);(4);(5);(6)33.(2021·上?!じ咭粚n}練習(xí))若,求實數(shù)a的取值范圍.34.(2020·上?!じ咭徽n時練習(xí))已知冪函數(shù)(其中,且p,q互素)試研究當(dāng)n,p,q分別取奇數(shù)和偶數(shù)時的圖像特征.答案第=page1818頁,共=sectionpages1919頁答案第=page1919頁,共=sectionpages1919頁參考答案:1.B【分析】由冪函數(shù)過點(diǎn),根據(jù)兩個冪函數(shù)的定義域的情況進(jìn)行分類分析可得答案.【詳解】和是兩個不同的冪函數(shù),設(shè),由冪函數(shù)過點(diǎn),當(dāng)和的定義域均為時,它們的圖象的交點(diǎn)有,,還可能有當(dāng)和中至少有一個的定義域為時,它們的圖象的交點(diǎn)有當(dāng)和中一個的定義域為,另一個的定義域為時,它們的圖象的交點(diǎn)有.所以它們圖像交點(diǎn)的個數(shù)為1或2或3故選:B2.A【分析】令,根據(jù)題意得冪函數(shù)的圖像在圖像的上方,再依次討論求解即可.【詳解】解:令,由成立得冪函數(shù)的圖像在圖像的上方,當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減,滿足圖像在圖像的上方;當(dāng)時,在和上都是單調(diào)遞減函數(shù),不滿足圖像在圖像的上方;當(dāng)時,,滿足圖像在圖像的上方;當(dāng)時,在上單調(diào)遞增且,不滿足圖像在圖像的上方;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增且為凸函數(shù),滿足圖像在圖像的上方;當(dāng)當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增且為凹函數(shù),不滿足圖像在圖像的上方;故滿足條件的為故選:A3.C【分析】分別求出,,的大致范圍,即可比較,,的大小.【詳解】由題意得,,故;,因,根據(jù)對勾函數(shù)得,因此;由勾股數(shù)可知,又因且,故;因此.故選:C.【點(diǎn)睛】指數(shù)式、對數(shù)式的大小比較,常利用函數(shù)的單調(diào)性或中間值進(jìn)行比較,要根據(jù)具體式子的特點(diǎn),選擇恰當(dāng)?shù)暮瘮?shù),有時還需要借助冪函數(shù)比較.對于比較的式子,要先化簡轉(zhuǎn)化,再比較大小.4.C【分析】當(dāng)m=0時,函數(shù)的圖象是一條直線除去點(diǎn);冪函數(shù)的冪指數(shù)小于0時,圖象不經(jīng)過;冪函數(shù)的圖象不可能在第四象限內(nèi);當(dāng)時,冪函數(shù)為奇函數(shù),但在定義域內(nèi)不是增函數(shù).逐項分析得到正確答案.【詳解】當(dāng)m=0時,函數(shù)的圖象是一條直線除去點(diǎn),所以A項不正確;冪函數(shù)的冪指數(shù)小于0時,圖象不經(jīng)過,所以B項不正確;冪函數(shù)的圖象不可能在第四象限內(nèi),所以C項正確;當(dāng)時,冪函數(shù)為奇函數(shù),但在定義域內(nèi)不是增函數(shù),所以D項不正確;故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:該題考查的是有關(guān)冪函數(shù)的性質(zhì),正確利用冪函數(shù)的性質(zhì)是正確解題的關(guān)鍵.5.A【分析】由冪函數(shù)為奇函數(shù),且在上遞減,得到是奇數(shù),且,由此能求出的值.【詳解】∵,冪函數(shù)為奇函數(shù),且在上遞減,∴是奇數(shù),且,∴.故選:A..【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:該題考查的是有關(guān)根據(jù)冪函數(shù)的性質(zhì)求參數(shù)的問題,正確解題的關(guān)鍵是熟練掌握冪函數(shù)的性質(zhì).6.A【解析】①舉反例說明命題為假;②應(yīng)該是伸縮變換,可以判斷出命題為假;③由奇偶函數(shù)的定義判斷處函數(shù)為偶函數(shù),可得命題為真;④將函數(shù)變形,由均值不等式的性質(zhì)可得最小值,可得命題為假.【詳解】解:①取冪函數(shù),顯然與僅有一個交點(diǎn),所以①不正確;②函數(shù)(k為常數(shù))的圖象可由函數(shù)的圖象經(jīng)過伸縮得到,所以②不正確;③設(shè),由,定義域關(guān)于原點(diǎn)對稱,則,是偶函數(shù),故③正確;④函數(shù),而在定義域上單調(diào)遞增,所以函數(shù)有最小值無最大值,所以④不正確.故選:A.【點(diǎn)睛】本題考查指對冪函數(shù)的性質(zhì),屬于基礎(chǔ)題.7.A【分析】根據(jù)題目中的條件和冪函數(shù)的圖像與性質(zhì),對四個命題分別進(jìn)行判斷,從而得到答案.【詳解】命題①,因為,為個不同的冪函數(shù),且冪函數(shù)都經(jīng)過點(diǎn),所以可得函數(shù)的圖像一定過點(diǎn),所以正確;命題②,冪函數(shù),若定義域中可取負(fù)數(shù)時,則冪函數(shù)圖像一定過或者,為個不同的冪函數(shù),若這個不同的冪函數(shù)都過,則函數(shù)的圖像過,若這個不同的冪函數(shù)有一個不過,則這個冪函數(shù)必過,則函數(shù)的圖像過,所以的圖像不可能過,所以錯誤;命題③若,若這個數(shù)中出現(xiàn)分子為奇數(shù),分母為偶數(shù)的分?jǐn)?shù),則函數(shù)的定義域為,不關(guān)于原點(diǎn)對稱,所以函數(shù)不為偶函數(shù),所以錯誤.命題④因為任意的一組數(shù)、、…、,一定存在各不相同的個數(shù)、、…、,則當(dāng)這個數(shù)中出現(xiàn)時,,此時為常數(shù)函數(shù),不是增函數(shù),所以錯誤.故選A.【點(diǎn)睛】本題考查冪函數(shù)的圖像特點(diǎn),冪函數(shù)的奇偶性和單調(diào)性,屬于中檔題.8.C【分析】結(jié)合函數(shù)(R)與(R)圖像與單調(diào)性,分四個象限討論每一個象限交點(diǎn)的最多個數(shù)得解.【詳解】結(jié)合函數(shù)(R)與(R)圖像與單調(diào)性可知,在第一象限,最多有2個交點(diǎn),在第二象限,最多有1個交點(diǎn),在第三、第四象限,因為函數(shù)(R)在第三、四象限沒有圖像,所以它們的圖像在第三、四象限沒有交點(diǎn),∴最多只有3個交點(diǎn).故選C【點(diǎn)睛】本題主要考查冪函數(shù)和指數(shù)函數(shù)的圖像和性質(zhì),考查函數(shù)的圖像的交點(diǎn)問題,意在考查學(xué)生對這些知識的理解掌握水平和數(shù)形結(jié)合分析推理能力.9.B【分析】先根據(jù)奇函數(shù)性質(zhì)確定取法,再根據(jù)單調(diào)性進(jìn)行取舍,進(jìn)而確定選項.【詳解】因為為奇函數(shù),所以因為,所以因此選B.【點(diǎn)睛】本題考查冪函數(shù)奇偶性與單調(diào)性,考查基本判斷選擇能力.10.【分析】分析冪函數(shù)的定義域、奇偶性與單調(diào)性,根據(jù)已知條件可得出關(guān)于的不等式組,由此可解得實數(shù)的取值范圍.【詳解】函數(shù)的定義域為,,函數(shù)為奇函數(shù),由冪函數(shù)的基本性質(zhì)可知,函數(shù)在上為減函數(shù),在上也為減函數(shù),且當(dāng)時,,當(dāng)時,.由可得或或,解得或.綜上所述,實數(shù)的取值范圍是.故答案為:.11.或【分析】函數(shù)的圖象與軸、軸都無交點(diǎn),且關(guān)于軸對稱,可得,且是偶數(shù),且,解方程即可.【詳解】因為函數(shù)的圖像與坐標(biāo)軸沒有公共點(diǎn),且關(guān)于y軸對稱所以由冪函數(shù)性質(zhì)可知,,且為偶數(shù),且,即,且為偶數(shù),且解得,當(dāng)和時,解析式為,當(dāng)時,解析式為.故答案為:或12.【分析】利用冪函數(shù)的定義及性質(zhì)求出m值,再解一元二次不等式即可得解.【詳解】因函數(shù)是冪函數(shù),則,解得或,當(dāng)時,是偶函數(shù),其圖象關(guān)于y軸對稱,與已知的圖象關(guān)于原點(diǎn)對稱矛盾,當(dāng)時,是奇函數(shù),其圖象關(guān)于原點(diǎn)對稱,于是得,不等式化為:,即,解得:,所以實數(shù)a的取值范圍為.故答案為:13.【分析】根據(jù)解析式可判斷是定義在上的奇函數(shù)且在上單調(diào)遞增,轉(zhuǎn)化不等式即可求解.【詳解】,,是定義在上的奇函數(shù),且顯然在上單調(diào)遞增,由可得,,解得.故答案為:.14.【分析】根據(jù)和分類討論,作出函數(shù)的圖象與直線,由它們有兩個交點(diǎn)得出的范圍.【詳解】時,作出函數(shù)的圖象,如圖,此時在時,,而,因此與函數(shù)的圖象只有一個交點(diǎn),不合題意;時,作出函數(shù)的圖象,如圖,此時在時,,因此與函數(shù)的圖象有兩個交點(diǎn),則,解得.綜上所述,.故答案為:.【點(diǎn)睛】方法點(diǎn)睛:本題考查直線與函數(shù)圖象交點(diǎn)個數(shù)問題,掌握指數(shù)函數(shù)的性質(zhì)與解題關(guān)鍵,解題方法是作出函數(shù)圖象,由圖象觀察直線與函數(shù)圖象交點(diǎn)個數(shù),形象直觀,易于得出結(jié)論.15.②④【分析】本題可根據(jù)函數(shù)的定義域以及是否滿足判斷函數(shù)是否關(guān)于軸對稱.【詳解】①:,,不關(guān)于軸對稱;②:,,滿足,關(guān)于軸對稱;③:,,不滿足,不關(guān)于軸對稱;④:,,滿足,關(guān)于軸對稱,故答案為:②④.16.【解析】根據(jù)不能是奇函數(shù)排除和,再利用冪函數(shù)的性質(zhì)排除2即可得出.【詳解】若,且,則冪函數(shù)的圖象一定在的上方,故不可能為奇函數(shù),即不能取和,當(dāng)取時,是偶函數(shù),故只需滿足即可,此時,即,則,即,則可取,故取值的集合是.故答案為:.【點(diǎn)睛】本題考查冪函數(shù)的性質(zhì),解題的關(guān)鍵是正確理解冪函數(shù)的性質(zhì)的特點(diǎn),以及不同冪函數(shù)的圖象特點(diǎn).17.【分析】求出冪函數(shù)、的解析式,然后分、解不等式,進(jìn)而可求得不等式的解集.【詳解】設(shè),,則,可得,.,,解得,.①當(dāng)時,,,此時恒成立;②當(dāng)時,由可得,,由于冪函數(shù)在區(qū)間上單調(diào)遞增,由可得,所以.綜上所述,不等式的解集為.故答案為:.【點(diǎn)睛】本題考查利用冪函數(shù)的單調(diào)性解不等式,關(guān)鍵是求出兩個冪函數(shù)的解析式.本題在解冪函數(shù)不等式時,注意對分和兩種情況討論,在時,借助了冪函數(shù)的單調(diào)性來求解,考查了學(xué)生的計算能力,屬于中等題.18.4【分析】列舉出所有兩個不同函數(shù)的交點(diǎn)個數(shù),篩選出符合題意的函數(shù)即可得結(jié)果.【詳解】圖象與、、、的圖象有1個、1個,2個、2個交點(diǎn);圖象與、、的圖象有1個、1個,1個交點(diǎn);圖象與、的圖象有2個、2個交點(diǎn);圖象與的圖象有3個交點(diǎn),綜上可得,滿足函數(shù)與的圖象恰有兩個交點(diǎn)的集合有4個:,故答案為:4【點(diǎn)睛】本題主要考查冪函數(shù)的圖象與性質(zhì),意在考查對基礎(chǔ)知識的掌握與應(yīng)用,屬于基礎(chǔ)題.19.【解析】根據(jù)題意,由冪函數(shù)的單調(diào)性分析可得、或,據(jù)此驗證函數(shù)的奇偶性,即可得答案.【詳解】解:根據(jù)題意,函數(shù)為冪函數(shù),若函數(shù)在上遞減,必有,則、或,當(dāng)時,,為偶函數(shù),符合題意,當(dāng)時,,為奇函數(shù),不符合題意,當(dāng)時,,為非奇非偶函數(shù),不符合題意;則;故答案為:.【點(diǎn)睛】本題考查冪函數(shù)的性質(zhì),注意冪函數(shù)的單調(diào)性以及奇偶性的分析,屬于基礎(chǔ)題.20.3【解析】由冪函數(shù)為偶函數(shù),且在(0,+∞)上是單調(diào)遞減函數(shù),可得m2-2m-3<0,且m2-2m-3為偶數(shù),m∈Z,且.解出即可.【詳解】∵冪函數(shù)為偶函數(shù),且在上是減函數(shù),∴,且為偶數(shù),,且.解得,,1,2,且,只有時滿足為偶數(shù).∴.故答案為:3.【點(diǎn)睛】本題考查冪函數(shù)的性質(zhì),根據(jù)冪函數(shù)性質(zhì)求參數(shù)值,可根據(jù)冪函數(shù)性質(zhì)列不等式和等式,求解即可,屬于基礎(chǔ)題.21.【分析】根據(jù)冪函數(shù)過點(diǎn)可求解析式,寫出,根據(jù)函數(shù)的解析式可求所過定點(diǎn).【詳解】因為冪函數(shù)過點(diǎn),可解得,所以,故,當(dāng)時,,故恒過定點(diǎn).故答案為【點(diǎn)睛】本題主要考查了冪函數(shù)的解析式,函數(shù)過定點(diǎn),屬于中檔題.22.【詳解】由題意得,,,即解集為23.(1);(2)當(dāng)時,為偶函數(shù),當(dāng)時,為非奇非偶函數(shù);(3).【分析】(1)由條件可得,解出的值,然后驗證即可;(2),分、兩種情況討論即可;(3)當(dāng)時,,然后化簡可得,然后可得答案.(1)因為為偶函數(shù),所以解得或當(dāng)時,為偶函數(shù),滿足題意當(dāng)時,是非奇非偶函數(shù),不滿足題意所以(2)因為,所以所以當(dāng)時,,為偶函數(shù),當(dāng)時,,為非奇非偶函數(shù),(3)因為函數(shù)在上是嚴(yán)格增函數(shù),所以當(dāng)時,,即所以,因為,所以,所以因為,所以,所以24.(1)(2)【分析】(1)先利用冪函數(shù)在區(qū)間上是嚴(yán)格增函數(shù)得到,再驗證其圖象關(guān)于軸對稱進(jìn)行求值;(2)利用(1)中函數(shù)的奇偶性和單調(diào)性進(jìn)行求解.(1)解:因為冪函數(shù)在區(qū)間上是嚴(yán)格增函數(shù),所以,解得,又因為,所以或或,當(dāng)或時,為奇函數(shù),圖象關(guān)于原點(diǎn)對稱(舍);當(dāng)時,為偶函數(shù),圖象關(guān)于軸對稱,符合題意;綜上所述,.(2)解:由(1)得為偶函數(shù),且在區(qū)間上是嚴(yán)格增函數(shù),則由得,即,即,解得,所以滿足的實數(shù)的取值范圍為.25.(1),;(2)存在,.【分析】(1)根據(jù)冪函數(shù)的定義及單調(diào)性,令冪的系數(shù)為1及指數(shù)為負(fù),列出方程求出的值,將的值代入即可;(2)求出的解析式,按照與的大小關(guān)系進(jìn)行分類討論,利用的單調(diào)性列出方程組,求解即可.【詳解】(1)(1)因為冪函數(shù)在上單調(diào)遞減,所以解得:或(舍去),所以;(2)由(1)可得,,所以,假設(shè)存在,使得在上的值域為,①當(dāng)時,,此時在上單調(diào)遞減,不符合題意;②當(dāng)時,,顯然不成立;③當(dāng)時,,在和上單調(diào)遞增,故,解得.綜上所述,存在使得在上的值域為.26.(1);;(2)(–2)–3<(–2.5)–3;(3)1.1–0.1>1.2–0.1;(4)<.【分析】(1)利用函數(shù)的單調(diào)性判斷得解;(2)利用函數(shù)y=x–3的單調(diào)性判斷得解;(3)利用函數(shù)y=x–0.1的單調(diào)性判斷得解;(4)判斷,,即得解.【詳解】(1),函數(shù)在(0,+∞)上為增函數(shù),又,則,從而.(2)冪函數(shù)y=x–3在(–∞,0)和(0,+∞)上為減函數(shù),又∵–2>–2.5,∴(–2)–3<(–2.5)–3.(3)冪函數(shù)y=x–0.1在(0,+∞)上為減函數(shù),又∵1.1<1.2,∴1.1–0.1>1.2–0.1.(4);,∴<.【點(diǎn)睛】方法點(diǎn)睛:比較實數(shù)的大小常用的方法:(1)差比法,先和0比,再和比,如果是函數(shù),多利用函數(shù)的單調(diào)性比較;(2)商比法.要根據(jù)已知條件靈活選擇方法求解.27.【分析】結(jié)合冪函數(shù)的定義域以及其在(0,+∞)上單調(diào)遞增,列出不等式組求解即可.【詳解】因為冪函數(shù)的定義域是{x|},且在(0,+∞)上單調(diào)遞增,則原不等式等價于,解得,所以實數(shù)m的取值范圍是.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:該題考查的是有關(guān)結(jié)合冪函數(shù)的定義和性質(zhì)求解不等式的問題,正確解題的關(guān)鍵是要時刻關(guān)注函數(shù)的定義域,研究函數(shù)先要保證函數(shù)的生存權(quán).28.或.【分析】根據(jù)冪函數(shù)的定義和性質(zhì)得到關(guān)于滿足的式子,即可求得的值.【詳解】因為冪函數(shù)是偶函數(shù),且在上為增函數(shù),所以,解得或,當(dāng)時,,當(dāng)時,.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:該題考查的是有關(guān)冪函數(shù)的問題,能夠正確解題的關(guān)鍵是熟練掌握冪函數(shù)的定義和冪函數(shù)的性質(zhì).29.(1);(2)當(dāng)時,為偶函數(shù);當(dāng)時,為奇函數(shù);當(dāng)且時,為非奇非偶函數(shù).理由見解析.【解析】(1)由題意可得:,解不等式結(jié)合即可求解;(2)由(1)可得,分別討論、、且時奇偶性即可求解.【詳解】(1)因為冪函數(shù)()在是嚴(yán)格減函數(shù),所以,即,解得:,因為,所以,當(dāng)時,,此時為奇函數(shù),不符合題意;當(dāng)時,,此時為偶函數(shù),符合題意;當(dāng)時,,此時為奇函數(shù),不符合題意;所以,(2),令當(dāng)時,,,此時是奇函數(shù),當(dāng)時,,此時是偶函數(shù),當(dāng)且時,,,,,此時是非奇非偶函數(shù)函數(shù).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題的關(guān)鍵點(diǎn)是利用冪函數(shù)的單調(diào)性求出可能性的取值,再利用奇偶性可確定的值,即可求解析式,第(2)問注意討論的值.30.(1);(2);(3)不存在,理由見解析.【解析】(1)由題意得,再由,可求得函數(shù)的值域;(2)令,則可化為,由于,所以分,,三種情況求解即可;(3)因為,為減函數(shù),所以在上的值域為,又在上的值域為,所以,即從而可得的關(guān)系,再由進(jìn)行判斷即可【詳解】(1)當(dāng)時,由,得,因為,所以,,所以的值域為.(2)令,因為,故,函數(shù)可化為.①當(dāng)時,;②當(dāng)時,;③當(dāng)時,,.綜上,(3)因為,為減函數(shù),所以在上的值域為,又在上的值域為,所以,即兩式相減,得,因為,所以,而由可得,矛盾.所以,不存在滿足條件的實數(shù)【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查冪函數(shù)和二次函數(shù)的綜合運(yùn)用,考查數(shù)學(xué)轉(zhuǎn)化思想,解題的關(guān)鍵是利用換元法,令,將函數(shù)可化為,然后利用二次函數(shù)求最值的方法求解,考查計算能力,屬于中檔題31.【分析】利用冪函數(shù)單調(diào)性求得,利用在上單調(diào)遞增及在上單調(diào)遞增,比較出,從而得出結(jié)論.【詳解】由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備維護(hù)助理工作總結(jié)
- XXX電子科技有限公司員工安全手冊(安全操作規(guī)程)
- 2025-2030全球汽車主動夜視系統(tǒng)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國臺式振動臺行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球監(jiān)視雷達(dá)系統(tǒng)行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球碳納米粉行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國三重四級桿液質(zhì)聯(lián)用儀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球DRM數(shù)字版權(quán)保護(hù)技術(shù)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國細(xì)胞活力檢測試劑盒行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球可重復(fù)使用墊料氣囊行業(yè)調(diào)研及趨勢分析報告
- 2024年決戰(zhàn)行測5000題言語理解與表達(dá)(培優(yōu)b卷)
- 中國游戲發(fā)展史課件
- 2025年慢性阻塞性肺疾病全球創(chuàng)議GOLD指南修訂解讀課件
- 第三單元名著導(dǎo)讀《駱駝祥子》整本書閱讀教學(xué)設(shè)計+2023-2024學(xué)年統(tǒng)編版語文七年級下冊
- 工程數(shù)學(xué)試卷及答案
- 《PLC應(yīng)用技術(shù)(西門子S7-1200)第二版》全套教學(xué)課件
- 第01講 直線的方程(九大題型)(練習(xí))
- 市政道路監(jiān)理大綱34368
- 《基礎(chǔ)會計》教學(xué)課件-整套教程電子講義
- 人教版七年級上冊數(shù)學(xué)全冊課時練習(xí)帶答案
- GB/T 44143-2024科技人才評價規(guī)范
評論
0/150
提交評論