版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年四川省德陽市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.曲線y=x-3在點(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-4
2.
3.下列命題中正確的有()A.A.
B.
C.
D.
4.
5.
6.
7.
8.設(shè)z=x3-3x-y,則它在點(1,0)處
A.取得極大值B.取得極小值C.無極值D.無法判定
9.
10.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時,有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
11.
12.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
13.設(shè)區(qū)域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.4
14.
15.擺動導(dǎo)桿機(jī)構(gòu)如圖所示,已知φ=ωt(ω為常數(shù)),O點到滑竿CD間的距離為l,則關(guān)于滑竿上銷釘A的運動參數(shù)計算有誤的是()。
A.運動方程為x=ltan∮=ltanωt
B.速度方程為
C.加速度方程
D.加速度方程
16.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個平面B.雙曲柱面C.橢圓柱面D.圓柱面17.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合
18.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是
A.xo為f(x)的極大值點
B.xo為f(x)的極小值點
C.xo不為f(x)的極值點
D.xo可能不為f(x)的極值點
19.
20.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C21.方程2x2-y2=1表示的二次曲面是().A.A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面
22.
23.
24.A.A.-(1/2)B.1/2C.-1D.2
25.
26.
27.下列關(guān)于動載荷的敘述不正確的一項是()。
A.動載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點的加速度必須考慮,而后者可忽略不計
B.勻速直線運動時的動荷因數(shù)為
C.自由落體沖擊時的動荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
28.
29.
30.二次積分等于()A.A.
B.
C.
D.
31.曲線y=x2+5x+4在點(-1,0)處切線的斜率為
A.2B.-2C.3D.-332.下列命題中正確的有().A.A.
B.
C.
D.
33.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C34.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)
35.
36.設(shè)函數(shù)/(x)=cosx,則
A.1
B.0
C.
D.-1
37.A.
B.
C.
D.
38.A.A.1
B.
C.
D.1n2
39.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
40.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
41.A.A.
B.
C.
D.
42.設(shè)平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0則平面π1與π2的位置關(guān)系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合43.一端固定,一端為彈性支撐的壓桿,如圖所示,其長度系數(shù)的范圍為()。
A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定44.下列結(jié)論正確的有A.若xo是f(x)的極值點,則x0一定是f(x)的駐點
B.若xo是f(x)的極值點,且f’(x0)存在,則f’(x)=0
C.若xo是f(x)的駐點,則x0一定是f(xo)的極值點
D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)
45.
46.
47.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號不定48.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
49.
50.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x二、填空題(20題)51.
52.曲線y=2x2-x+1在點(1,2)處的切線方程為__________。
53.
54.55.交換二重積分次序∫01dx∫x2xf(x,y)dy=________。
56.
57.
58.
59.60.61.62.
63.
64.
65.
66.
67.
68.
69.
70.函數(shù)的間斷點為______.三、計算題(20題)71.將f(x)=e-2X展開為x的冪級數(shù).72.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
73.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
74.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.75.76.
77.求微分方程的通解.78.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
79.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
80.求微分方程y"-4y'+4y=e-2x的通解.
81.求曲線在點(1,3)處的切線方程.
82.
83.
84.
85.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.87.88.89.證明:90.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.四、解答題(10題)91.求由曲線y=1眥過點(e,1)的切線、x軸及該曲線所圍成平面圖形D的面積A及該圖形繞y軸旋轉(zhuǎn)一周所生成的旋轉(zhuǎn)體的體積Vy。
92.
93.
94.求y=xex的極值及曲線的凹凸區(qū)間與拐點.
95.
96.求曲線y=2-x2和直線y=2x+2所圍成圖形面積.
97.
98.設(shè)函數(shù)f(x)=x3-3x2-9x,求f(x)的極大值。
99.
100.
五、高等數(shù)學(xué)(0題)101.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。
A.若,則在[a,b]上f(x)=0
B.若,則在[a,b]上f(x)=g(x)
C.若a<c<d<b,則
D.若f(x)≤g(z),則
六、解答題(0題)102.
參考答案
1.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(1,1)處的切線斜率為-3,故選C。
2.C
3.B
4.B
5.D
6.A
7.B
8.C
9.A
10.B
11.B解析:
12.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
13.D的值等于區(qū)域D的面積,D為邊長為2的正方形面積為4,因此選D。
14.A
15.C
16.A
17.A本題考查的知識點為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時,兩平面平行;
當(dāng)時,兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
18.A
19.A
20.C
21.B本題考查的知識點為識別二次曲面方程.
由于二次曲面的方程中缺少一個變量,因此它為柱面方程,應(yīng)選B.
22.C
23.A
24.A
25.B
26.D
27.C
28.C
29.D解析:
30.A本題考查的知識點為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
31.C解析:
32.B本題考查的知識點為級數(shù)的性質(zhì).
可知應(yīng)選B.通??梢詫⑵渥鳛榕卸墧?shù)發(fā)散的充分條件使用.
33.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識點。
34.Bf(x)=2x3-9x2+12x-3的定義域為(-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點x1=1,x2=2。
當(dāng)x<1時,f'(x)>0,f(x)單調(diào)增加。
當(dāng)1<x<2時,f'(x)<0,f(x)單調(diào)減少。
當(dāng)x>2時,f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
35.D
36.D
37.A本題考查的知識點為偏導(dǎo)數(shù)的計算。由于故知應(yīng)選A。
38.C本題考查的知識點為定積分運算.
因此選C.
39.B因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時,f(0)=ln2,所以C=ln2,故f(x)=e2xln2.
40.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
41.Dy=e-2x,y'=(e-2x)'=e-2x(-2x)'=-2e-2x,dy=y'dx=-2e-2xdx,故選D。
42.A平面π1的法線向量n1=(2,1,4),平面π2的法線向量n2=(2,-8,1),n1*n1=0??芍獌善矫娲怪?,因此選A。
43.D
44.B
45.C
46.D
47.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時,f(x)可能大于0也可能小于0。
48.C本題考查的知識點為函數(shù)連續(xù)性的概念。由于f(x)在點x=0連續(xù),因此,故a=1,應(yīng)選C。
49.C
50.D
51.
52.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)
53.[-11]
54.55.因為∫01dx∫x2xf(x,y)dy,所以其區(qū)域如圖所示,所以先對x的積分為。
56.
57.
58.3x2+4y3x2+4y解析:59.0
60.本題考查的知識點為偏導(dǎo)數(shù)的運算。由于z=x2+3xy+2y2-y,可得
61.1/6
62.
63.
64.
65.解析:
66.
67.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識點。
68.0
69.270.本題考查的知識點為判定函數(shù)的間斷點.
僅當(dāng),即x=±1時,函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點。
71.
72.
73.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%74.由二重積分物理意義知
75.76.由一階線性微分方程通解公式有
77.
78.
79.由等價無窮小量的定義可知
80.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
81.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
82.
83.
84.
則
85.
列表:
說明
86.
87.
88.
89.
90.函數(shù)的定義域為
注意
91.
92.
93.94.y=xex
的定義域為(-∞,+∞),y'=(1+x)ex,y"=(2+x)ex.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品飲料行業(yè)銷售總結(jié)
- 寫一季的作文(13篇)
- 直槽調(diào)節(jié)板課程設(shè)計
- 域名續(xù)費協(xié)議書
- 2024年醫(yī)院護(hù)工崗位責(zé)任制及薪酬待遇合同3篇
- 2024年版:金融企業(yè)秘密保護(hù)合同
- 材料成型的課程設(shè)計
- 玉米播種機(jī)課程設(shè)計
- 文員崗位試用期工作總結(jié)范文(9篇)
- 2024年度商業(yè)空間托管裝修材料供應(yīng)合同范本3篇
- 存款保險知識競賽題庫(筆試環(huán)節(jié))附有答案
- 貴州省黔南州2023-2024學(xué)年度上學(xué)期期末質(zhì)量監(jiān)測八年級物理試卷
- 籃球智慧樹知到期末考試答案章節(jié)答案2024年溫州理工學(xué)院
- 年度安全事故統(tǒng)計表
- 中學(xué)體育節(jié)競賽規(guī)程活動方案
- 九年級歷史期末考試質(zhì)量分析
- 研學(xué)基地申報模板
- 華南理工大學(xué)《-模擬電子技術(shù)-》歷年期末試卷4套含答案
- 《學(xué)校章程》制訂工作會議紀(jì)要(六)
- 樁基溶洞處理專項施工方案(2024.4.2旋)
- 常用工具的正確使用
評論
0/150
提交評論