版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年山東省菏澤市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.設(shè)z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
2.
3.下列關(guān)于動(dòng)載荷Kd的敘述不正確的一項(xiàng)是()。
A.公式中,△j為沖擊無以靜載荷方式作用在被沖擊物上時(shí),沖擊點(diǎn)沿沖擊方向的線位移
B.沖擊物G突然加到被沖擊物上時(shí),K1=2,這時(shí)候的沖擊力為突加載荷
C.當(dāng)時(shí),可近似取
D.動(dòng)荷因數(shù)Ka因?yàn)橛蓻_擊點(diǎn)的靜位移求得,因此不適用于整個(gè)沖擊系統(tǒng)
4.下列關(guān)系式正確的是()A.A.
B.
C.
D.
5.A.6YB.6XYC.3XD.3X^2
6.
7.下列結(jié)論正確的有A.若xo是f(x)的極值點(diǎn),則x0一定是f(x)的駐點(diǎn)
B.若xo是f(x)的極值點(diǎn),且f’(x0)存在,則f’(x)=0
C.若xo是f(x)的駐點(diǎn),則x0一定是f(xo)的極值點(diǎn)
D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)
8.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
9.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)
10.設(shè)f'(x0)=0,f"(x0)<0,則下列結(jié)論必定正確的是().A.A.x0為f(x)的極大值點(diǎn)
B.x0為f(x)的極小值點(diǎn)
C.x0不為f(x)的極值點(diǎn)
D.x0可能不為f(x)的極值點(diǎn)
11.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2
12.A.3B.2C.1D.0
13.
設(shè)f(x)=1+x,則f(x)等于()。A.1
B.
C.
D.
14.
等于()A.A.
B.
C.
D.0
15.
16.
17.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.
B.
C.
D.
18.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面
19.
20.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長(zhǎng)為a=20mm,a=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
21.
22.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().
A.-3/4B.0C.3/4D.1
23.函數(shù)在(-3,3)內(nèi)展開成x的冪級(jí)數(shù)是()。
A.
B.
C.
D.
24.()。A.3B.2C.1D.0
25.
26.A.2x
B.3+2x
C.3
D.x2
27.若,則下列命題中正確的有()。A.
B.
C.
D.
28.下列()不是組織文化的特征。
A.超個(gè)體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性
29.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
30.
31.設(shè)曲線y=x-ex在點(diǎn)(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-1
32.
33.
34.
35.
36.
A.sinx+C
B.cosx+C
C.-sinx+C
D.-COSx+C
37.設(shè)y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx
38.若f(x)有連續(xù)導(dǎo)數(shù),下列等式中一定成立的是
A.d∫f(x)dx=f(x)dx
B.d∫f(x)dx=f(x)
C.d∫f(x)dx=f(x)+C
D.∫df(x)=f(x)
39.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散
40.
41.
42.A.0B.1C.∞D(zhuǎn).不存在但不是∞43.設(shè)函數(shù)f(x)=sinx,則不定積分∫f'(x)dx=A.A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C44.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
45.
46.
47.A.A.0B.1C.2D.348.A.A.0B.1C.2D.任意值49.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
50.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
二、填空題(20題)51.微分方程y''+6y'+13y=0的通解為______.52.
53.
54.設(shè),則y'=________。
55.
56.57.曲線y=x3-3x2-x的拐點(diǎn)坐標(biāo)為____。58.
59.
60.
61.
62.63.64.65.∫x(x2-5)4dx=________。
66.設(shè)f(x)=xex,則f'(x)__________。
67.
68.69.y=ln(1+x2)的單調(diào)增加區(qū)間為______.
70.
三、計(jì)算題(20題)71.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
72.求曲線在點(diǎn)(1,3)處的切線方程.73.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.74.75.證明:76.將f(x)=e-2X展開為x的冪級(jí)數(shù).77.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
78.
79.
80.
81.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
82.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
83.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
84.
85.求微分方程y"-4y'+4y=e-2x的通解.
86.87.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.88.求微分方程的通解.89.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.90.四、解答題(10題)91.
92.
93.
94.
95.
96.
97.
98.
99.求曲線y=x3-3x+5的拐點(diǎn).
100.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。
五、高等數(shù)學(xué)(0題)101.要造一個(gè)容積為4dm2的無蓋長(zhǎng)方體箱子,問長(zhǎng)、寬、高各多少dm時(shí)用料最省?
六、解答題(0題)102.
參考答案
1.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對(duì)于z=x2y,求的時(shí)候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。
2.D
3.D
4.C
5.D
6.A解析:
7.B
8.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
Y=sin2x,
則y'=cos(2x)·(2x)'=2cos2x.
可知應(yīng)選D.
9.A
10.A本題考查的知識(shí)點(diǎn)為函數(shù)極值的第二充分條件.
由極值的第二充分條件可知應(yīng)選A.
11.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由題設(shè)知f'(x0)=1,又由題設(shè)條件知
可知應(yīng)選B.
12.A
13.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)??芍獞?yīng)選C。
14.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有
故應(yīng)選D.
15.D
16.C
17.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛-萊公式.
可知應(yīng)選D.
18.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。
19.B
20.C
21.D解析:
22.D解析:本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.
由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使
可知應(yīng)選D.
23.B
24.A
25.B
26.A由導(dǎo)數(shù)的基本公式及四則運(yùn)算法則,有故選A.
27.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
28.B解析:組織文化的特征:(1)超個(gè)體的獨(dú)特性;(2)相對(duì)穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。
29.D由拉格朗日定理
30.D
31.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(diǎn)(0,-1)處切線斜率為0,因此選C.
32.B
33.A
34.B
35.A解析:
36.A
37.Cy=cosx,y'=-sinx,y''=-cosx.
38.A解析:若設(shè)F'(x)=f(x),由不定積分定義知,∫f(x)dx=F(x)+C。從而
有:d∫f(x)dx=d∫F(x)+C]=F'(x)dx=f(x)dx,故A正確。D中應(yīng)為∫df(x)=f(x)+C。
39.D
40.D
41.D
42.D
43.A由不定積分性質(zhì)∫f'(x)dx=f(x)+C,可知選A。
44.A
45.B
46.C
47.B
48.B
49.C
50.C51.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).52.0
53.(-∞0]
54.
55.2
56.57.(1,-1)58.2.
本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
59.
60.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
61.5/462.本題考查的知識(shí)點(diǎn)為定積分的基本公式。63.5.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
解法1
解法2
64.-24.
本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:
65.
66.(1+x)ex
67.68.
69.(0,+∞)本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.
由于y=ln(1+x2),其定義域?yàn)?-∞,+∞).
又由于,令y'=0得唯一駐點(diǎn)x=0.
當(dāng)x>0時(shí),總有y'>0,從而y單調(diào)增加.
可知y=ln(1+x2)的單調(diào)增加區(qū)間為(0,+∞).
70.(-33)
71.
72.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
73.由二重積分物理意義知
74.
75.
76.77.函數(shù)的定義域?yàn)?/p>
注意
78.
79.由一階線性微分方程通解公式有
80.
則
81.
列表:
說明
82.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%83.由等價(jià)無窮小量的定義可知
84.
85.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.99.y'=3x2-3,y''=6x令y''=0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 景德鎮(zhèn)藝術(shù)職業(yè)大學(xué)《配合物化學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 遼寧大學(xué)《嵌入式技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇海事職業(yè)技術(shù)學(xué)院《口腔科學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 黑龍江工程學(xué)院昆侖旅游學(xué)院《建筑施工組織》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶三峽職業(yè)學(xué)院《食品儀器分析原子吸收測(cè)定水中鈣(標(biāo)準(zhǔn)曲線法)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江越秀外國(guó)語學(xué)院《漆畫表現(xiàn)灰料新語言》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江海洋大學(xué)《GIS氣象應(yīng)用與開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國(guó)計(jì)量大學(xué)《生物信息學(xué)入門(雙語)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中央財(cái)經(jīng)大學(xué)《工程建筑制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)德育工作的管理制度
- 大學(xué)生職業(yè)生涯規(guī)劃-自我認(rèn)知-課件
- 硬件研發(fā)產(chǎn)品規(guī)格書mbox103gs
- 直升機(jī)結(jié)構(gòu)與系統(tǒng)版
- 青春期教育-女生版青春期性教育-青春期性教育自慰課件
- 新生兒疾病診療規(guī)范診療指南診療常規(guī)2022版
- 兒科學(xué) 新生兒顱內(nèi)出血
- YY/T 0065-2016眼科儀器裂隙燈顯微鏡
- 喜報(bào)可編輯11張
- 食管癌護(hù)理查房20352
- 餐飲服務(wù)投標(biāo)文件
- 城投公司的債務(wù)風(fēng)險(xiǎn)及化解方式
評(píng)論
0/150
提交評(píng)論